МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ ГУМАНИТАРНО-ТЕХНОЛОГИЧЕСКАЯ АКАДЕМИЯ»

А.М. Нагаев

ОЦЕНКА ПИТАТЕЛЬНОСТИ КОРМОВ И НАУЧНЫЕ ОСНОВЫ ПОЛНОЦЕННОГО КОРМЛЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Методические указания к практическим занятиям аспирантам направления подготовки 36.06.01 «ВЕТЕРИНАРИЯ И ЗООТЕХНИЯ» направленность Частная зоотехния, технология производства продуктов животноводства

УДК 636.085.2 ББК 45.45:46-4 Н 16

Рассмотрено на заседании кафедры « Технологии производства и переработки сельскохозяйственной продукции»

Протокол № 12 от 16 июня 2015 г.

Рекомендовано к изданию редакционно-издательским советом СевКавГГТА.

Протокол № от 25.11.2015 г.

Рецензент: **Гогуев Э.Х.**– к. в. н., доцент кафедры «Ветеринарная медицина».

Н16 **Нагаев, А.М.** Оценка питательности кормов и научные основы полноценного кормления сельскохозяйственных животных: методические указания к практическим занятиям по дисциплине «Оценка питательности кормов и научные основы полноценного кормления сельскохозяйственных животных» аспирантам направления подготовки 36.06.01 «ВЕТЕРИНАРИЯ И ЗООТЕХНИЯ» / А.М. Нагаев — Черкесск: БИЦ СевКавГГТА, 2016.- 32 с.

В учебно-методическом пособии приведены темы для практического изучения аспирантами дисциплины, указаны цели изучения, материальное обеспечение и задания для выполнения.

УДК 636.085.2 ББК45.45:46-4

Содержание

Введение	4
Тема 1. Основные принципы оценки питательности кормов и нормирования кормления животных	5
Тема 2. Современное представление о питании сельскохозяйственных животных	12
Тема 3. Особенности нормирования кормления сельскохозяйственных животных	18
Библиографический список	23

ВВЕДЕНИЕ

Кормление сельскохозяйственных животных — зоотехническая наука, изучающая потребность в питательных и биологически активных веществах и их нормирование животным в целях обеспечения максимальной, генетически обусловленной продуктивности при сохранении здоровья и воспроизводительной функции.

Методические указания к практическим занятиям по дисциплине «Оценка питательности кормов и научные основы полноценного кормления сельскохозяйственных животных» составлены в соответствии с программой курса, включены актуальные вопросы нормированного кормления всех видов сельскохозяйственных животных. Акцентировано важнейших особенностях нормированного кормления внимание на высокопродуктивных животных в условиях современных технологий.

Тема 1. Основные принципы оценки питательности кормов и нормирования кормления животных

Занятие 1. Способы определения потребности в энергии и питательных веществах

Цель занятия: научиться правильно определять потребности животных в энергии и питательных веществах.

Методические указания

В России, как и в большинстве зарубежных стран, принято оценивать корма в единицах обменной энергии, представляющей собой часть энергии корма, которая в организме животного используется для обеспечения жизнедеятельности и образования продукции.

В лабораторных условиях для определения энергии, содержащейся в корме и выделениях животного, используют калориметры, в которых испытуемое вещество сжигают в атмосфере чистого кислорода. Выделившуюся при сгорании тепловую энергию пересчитывают на 1 г или 1 кг вещества и выражают в мега- джоулях (МДж) или килокалориях (ккал).

Согласно ГОСТ 9867 - 61, 1 кал = 4,1868 Дж, 1 Дж = 0,2388 кал.

Энергия 1 кДж = 1000 Дж; 1 МДж = 1000 кДж.

Химические изменения веществ в процессе обмена сопровождаются превращениями энергии в организме животного, причем обмен веществ и обмен энергии считаются лишь разными формами одного и того же процесса. Поэтому для изучения материальных изменений в организме животного прибегают и к определению баланса энергии.

Для этого требуются сведения о количестве энергии в кормах (валовая энергия) и выделенной животными из организма: у птицы - с пометом, у свиней, крупного рогатого скота, лошадей и овец - с калом и мочой. Для жвачных животных и лошадей дополнительно учитывают потери энергии с газами желудочно-кишечного тракта и определяют их в респирационных опытах.

Схема обмена энергии в организме приведена на рисунке 1.

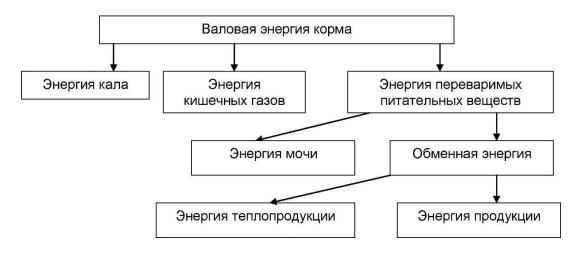


Рисунок 1— Схема обмена энергии в организме

Материалы и оборудование: плакаты, справочники.

Задание 1. Рассчитайте баланс азота и углерода у откармливаемого животного на основании следующих данных: поступило с кормом 260 г азота и 5470 г углерода; выделено с калом 95 г азота и 1490г углерода, с мочой - 150г азота и 310 г углерода, с газами - (метаном и диоксидом углерода) 3280 г углерода. Расчеты записать в таблицу 1.

Таблица 1 - Форма расчета данных для определения баланса азота и углерода

Показатель	Азот, г		Угле	род, г
	поступило	выделено	поступило	выделено
Корма				
Кал				
Моча				
Газы				
Выделено				
всего				
Баланс				

Определите, сколько граммов белка и жира накопилось или распалось в организме животного, если белок тела содержит 16,67 % азота и 52,54 % углерода, а жир - 76,5 % углерода.

Задание 2. Рассчитайте энергетическую питательность (в ОКЕ) 1 кг сена лугового, клевера лугового, свеклы сахарной, зерна кукурузы, жмыха подсолнечного. При выполнении задания используйте справочные данные о химическом составе (см. приложение 8 в Практикуме по кормлению животных) и коэффициентах переваримости питательных веществ кормов (табл. 2).

Таблица 2 - Коэффициенты переваримости кормов

Корма	Коэффициенты переваримости			
	протеина	жира	клетчатки	БЭВ
Сено луговое	0,55	0,53	0,59	0,67
3.м. клевера лугового	0,71	0,54	0,48	0,76
Свекла сахарная	0,71	0,67	0,60	0,87
Зерно кукурузы	0,52	0,83	0,40	0,92
Жмых подсолнечн.	0,75	0,67	055	0,80

Методика расчета овсяных кормовых единиц:

- 1. Содержание сырых питательных веществ (СП, СЖ, СК, СБЭВ) умножают на соответствующие коэффициенты их переваримости (справочные данные) и получают количество переваримых питательных веществ (ПП, ПЖ, ПК, ПБЭВ).
- 2. Переваримые питательные вещества (ПП, ПЖ, ПК, ПБЭВ) умножают на соответствующий показатель продуктивного действия (по

Кельнеру) и тем самым определяют ожидаемое жироотложение в организме животного за счет каждого из этих питательных веществ.

- 3. Суммируя показатели жироотложения, определяют общее количество ожидаемого жироотложения в организме за счет использования всех питательных веществ.
- 4. В ожидаемое жироотложение вносят поправки: а) на «неполноценность» корма (путем умножения ожидаемого жироотложения на соответствующий коэффициент полноценности корма); б) на снижение жироотложения в зеленых и грубых кормах за счет сырой клетчатки (количество сырой клетчатки корма умножают на коэффициент снижения жироотложения и результат вычитают из ожидаемого жироотложения). Получают фактическое жироотложение.
- 5. Показатель фактического жироотложения каждого корма делят на показатель продуктивного действия 1-й овсяной кормовой единицы (150 г) и получают содержание овсяных кормовых единиц в 1 кг корма.

Задание 3. Используя разные методы, представленные в Практикуме по кормлению животных (стр. 23-25), рассчитайте концентрацию обменной энергии (ОЭ) в зерне ячменя, отрубях пшеничных и траве луговой при скармливании их животным разных видов:

для крупного рогатого скота - по уравнению регрессии (1-й способ); с определением количества переваримой энергии и по соотношению между переваримой и обменной энергией 2-й способ); с использованием коэффициентов Ж. Аксельсона (3-й способ);

для свиней - по уравнению регрессии (1-й способ); по сумме переваримых питательных веществ и соотношению переваримой и обменной энергии (2-й способ); по количеству переваримых питательных веществ с использованием энергетических эквивалентов (3-й способ).

Контрольные вопросы и задания

- 1. Перечислите методы определения энергетической ценности кормов.
- 2. Что такое овсяная кормовая единица (ОКЕ) и каковы недостатки оценки питательности кормов в ОКЕ?
- 3. Назовите схему распределения энергии корма в организме животного. Что такое валовая энергия, энергия переваримых веществ, обменная энергия, чистая энергия?

Занятие 2. Корма и структура рациона

Цель занятия: Изучить особенности химического состава и питательной ценности кормов, схему их классификации. Освоить методы оценки кормов по переваримым питательным веществам, усвояемости и биологической ценности питательных веществ.

Методические указания

Корма - это специально приготовленные, физиологически приемлемые продукты, содержащие в доступной форме необходимые животному организму энергию, питательные и биологически активные вещества.

Питательность корма - это комплексный показатель, отражающий свойство корма удовлетворять потребности животных в энергии, питательных, минеральных веществах и витаминах.

В основу классификации положено происхождение кормов. Они бывают растительного или животного происхождения. Отдельную группу составляют минеральные добавки и биологически активные вещества.

Химический состав кормов служит важным показателем их питательности, но более полное представление о ценности кормов можно получить лишь в результате изучения действия их на организм животного.

Учитывая, что химический состав не дает полного представления о питательной ценности корма, ее оценивают в процессе взаимодействия с организмом животного в пищеварительном тракте, то есть определяют переваримость питательных веществ корма. В оптимальных условиях переваривание и усвоение питательных веществ корма в желудочно-кишечном тракте связано со спецификой обмена веществ у животных разных видов.

Переваримость - это ряд гидролитических расщеплений составных частей корма (белков, жиров и углеводов) под влиянием ферментов пищеварительных соков и микроорганизмов. В результате вещества, входящие в состав кормов, распадаются на аминокислоты, моносахариды, жирные кислоты и растворимые соли: Все они растворимы в воде, а потому легко всасываются в пищеварительном тракте и поступают в кровь и лимфу.

Переваримыми питательными веществами называют вещества, которые после расщепления в результате пищеварения поступают в кровь и лимфу. Часть же веществ корма с остатками пищеварительных соков, слизью, кишечным эпителием и продуктами обмена выводится из организма в виде кала.

Переваримость определяют по разности между питательными веществами, принятыми с кормами и выделенными с калом, и выражают как в граммах, так и в процентах.

Отношение количества переваренного питательного вещества, изучаемого в опыте, к потребленному с кормом, выраженное в процентах, называют коэффициентом переваримости.

Сумма переваримых питательных веществ (СППВ). Сумма переваримых питательных веществ служит показателем общей питательности корма:

СППВ = ПП +
$$2,25$$
ПЖ* + ПК + ПБЭВ,

где: ПП - переваримый протеин; ПЖ - переваримый жир;

ПК - переваримая клетчатка;

ПБЭВ - переваримые безазотистые экстрактивные вещества.

Переваримость питательных веществ зависит от многих факторов: вида, возраста животного, состава рациона, способа подготовки кормов, техники кормления и др.

Материалы и оборудование: альбомы, плакаты, справочники.

Задание 1. Используя справочные данные, проведите сравнительную оценку химического состава следующих кормов: травы луговой и клеверной, травяной и клеверной муки, сенажа клеверного, сена лугового и люцернового, соломы яровой, силоса кукурузного, свеклы кормовой, зерна кукурузы, ячменя, сои, гороха, отрубей пшеничных, жмыха подсолнечного, шрота соевого, пивной дробины свежей и сухой, жома кислого, дрожжей кормовых, обезжиренного молока, мясокостной муки.

Задание 2. Сделайте заключение и выпишите корма с высоким и низким содержанием (в 1 кг корма) сухого вещества, сырой клетчатки, сырого протеина, амидов, безазотистых экстрактивных веществ, сахара, сырой золы.

Задание 3. Используя справочные данные химического состава кормов (таблица 3), рассчитайте коэффициенты переваримости, сумму переваримых питательных веществ и протеиновое отношение в рационе коровы, которая получала в сутки 3 кг сена злаково-бобового, 7 кг сенажа разнотравного, 25 кг силоса кукурузного, 1,4 кг патоки, 2 кг овсяной и 3 кг ячменной дерти, 1 кг жмыха подсолнечного. В среднем за сутки корова выделяла 32 кг кала, в котором содержалось 19,3 % сухого вещества, 17,9 % органического вещества, 2,3 % протеина, 0,9 % жира, 5,5 % клетчатки, 7 % БЭВ. Расчеты выполните, используя форму таблицы 4.

Таблица 3 - Химический состав кормов и кала, в %

Показатель	Cyxoe	Органи-	Протеин	Жир	Клетчатка	БЭВ
	вещество	ческое				
		вещество				
Сено злаково-бобовое	84,5	79,6	14,5	2,8	19,6	42,7
Сенаж разнотравный	52,6	48,8	8,6	1,8	10,2	28,2
Силос кукурузный	25,0	23,8	3,4	1,2	5,6	13,6
Патока	80,0	76,2	10,0	0,1	1	65,1
Овсяная дерть	85,0	81,8	10,8	4,0	9,7	57,3
Ячменная дерть	89,0	84,2	15,4	1,5	3,0	64,3
Жмых подсолнечный	90,0	85,4	40,5	7,7	12,9	24,3
Выделенный кал	19,3	17,9	2,3	0,9	5,5	9,2

Сделайте заключение.

Контрольные вопросы и задания

- 1. Какое значение для оценки питательности кормов имеет химический состав кормов?
 - 2. Что понимается под питательностью кормов?
 - 3. Схема классификации кормов.
- 4. Что такое переваримость питательных веществ корма и методы ее определения?
 - 5. Показатели общей питательности кормов.
 - 6.По какой формуле определяют протеиновое отношение?

Таблица 4 - Расчет коэффициентов переваримости питательных веществ, %

Потреблено с кормами за сутки:	СВ, кг	ОВ, кг	Протеин, г	Жир, г	Клетчатка, г	БЭВ, г
с 3 кг сена						
с 7 кг сенажа						
с 25 кг силоса						
с 1,4 кг патоки						
с 2 кг овсяной дерти						
с 3 кг ячменной дерти						
с 1 кг жмыха подс.						
Всего потреблено:						
Выделено с 32 кг кала						
Переварено:						
Коэф. переваримости, %						

Занятие3. Техника кормления сельскохозяйственных животных Цель занятия: Ознакомится с признаками неполноценного кормления животных и их проявлением. Освоить зооветеринарные и биохимические методы контроля полноценности кормления животных.

Методические указания

Контроль полноценности кормления по зооветеринарным и биохимическим показателям — часть комплексной оценки питательности кормов. Кормление, при котором животные получают питательные и биологически активные вещества в соответствии с их потребностями, называют полноценным.

Аппетит — важнейший показатель благополучия животного. Ухудшение аппетита — ранний признак нарушения обмена на почве неполноценного кормления.

Методы контроля полноценности кормления подразделяют биохимические. ветеринарно-зоотехнические И Ежедневная органолептическая оценка качества кормов, наблюдения за животными, их поведением, аппетитом, состоянием выделений (цвет, консистенция) дают информацию об эффективности кормления, важную зачастую субъективную.

Материалы и оборудование: альбомы, плакаты, справочники. ЗАДАНИЕ 1. Используя справочную литературу, определите последствия несбалансированного питания животных и птицы и укажите пути устранения и профилактики этих последствий. Задание выполнить по форме таблицы 5.

Таблица 5 - Последствия несбалансированного кормления животных и птицы

	Показат	Послед	Пути	Послед	Пути
ель		ствия при	ликвидации	ствия при	ликвидации
		недостатке	недоста	избытке	избытка
			тка		
	Энерги				
Я					
	Протеи				
Н					
	Жир				

Контрольные вопросы и задания

1. Каковы последствия несбалансированного кормления животных и птицы?

Тема 2.Современное представление о питании сельскохозяйственных животных

Занятие 1. Протеины, жиры и углеводы в питании сельскохозяйственных животных и потребность в них..

Цель занятия: Изучить протеины, жиры и углеводы в питании сельскохозяйственных животных и потребность в них.

Методические указания

Протеин играет первостепенную роль в построении тела и жизнедеятельности животного организма.

Условно можно выделить три основные функции протеина: строительную, биологическую и энергетическую.

Строительная, или пластическая, функция заключается в том, что протеин является строительным материалом для синтеза белков организма, входящих в состав всех органов и тканей, являющихся составной частью продукции: молока, мяса, яиц, шерсти.

Биологическая, или регуляторная, функция состоит в том, что белки являются составной частью многих биологически активных веществ (БАВ): ферментов, определяющих скорость процессов синтеза и распада, происходящих на клеточном уровне; гормонов, участвующих в регуляции процессов жизнедеятельности. Белки входят в состав иммунных тел, определяющих защитные функции организма, в состав антибиотиков.

Энергетическая функция протеина не является основной, так как главным источником энергии для животных являются углеводы, жиры.

протеина Дефицит в рационах животных ведет К последствиям: снижается продуктивность, ухудшается качество продукции (например, уменьшается в молоке содержание белка и жира), замедляется рост молодняка, возрастает продолжительность выращивания и откорма; увеличиваются затраты кормов на единицу продукции - при недостатке протеина на 1 %, затраты кормовых единиц возрастают на 2 %, ухудшается переваримость и использование питательных веществ кормов. Недостаток протеина отрицательно сказывается воспроизводительных также на функциях животных, состоянии их здоровья, снижаются защитные свойства заболевания, возникают В TOM числе дистрофия. балансирования рациона используют синтетические азотсодержащие добавки (САВ) (табл. 6).

Таблица 6 - Азотсодержащие добавки для жвачных животных

Синтетические	1г САВ экви-	Синтетические	1 г САВ эквива-
азотсодержащие до-	валентен	азотсодежащие	лентен
бавки (САВ)	переваримому	добавки (САВ)	переваримому
	протеину, г		протеину, г
Мочевина (карбамид)	2,6	Биурет	2,0
Диаммоний	1,2	Сульфат аммония	1,2
Фосфат мочевины	1,0	Хлорид аммония	1,2
Бикарбонат аммония	1,0	Ацетил - мочевина	1,4

Значение жира в питании животных определяется содержанием в нем жизненно необходимых жирных кислот и высокой его калорийностью по сравнению с другими питательными веществами корма.

Животные для нормального существования нуждаются в постоянном получении с кормом, по крайней мере одной из незаменимых жирных кислот - линолевой, линоленовой и арахидоновой. Эти жирные кислоты не синтезируются в теле животных и нужны им для роста и размножения.

Среди органических веществ кормов группа углеводов составляет до 80% сухого вещества. Поэтому количественно в питании животных углеводы занимают первое место, хотя в теле животных углеводов практически не содержится, за исключением небольшого количества глюкозы, а также гликогена в печени и мышцах.

Крахмал, сахароза, глюкоза, мальтоза, фруктоза и другие углеводы, содержащиеся в кормах, необходимы животным как источник энергии, они определяют в организме уровень энергетического питания. При окислении 1 г углеводов в организме животных выделяется 17 кДж энергии. Углеводы обмена оказывают влияние на интенсивность жиров Энергетические углеводы в организме окисляются до углекислого газа и воды с выделением энергии, которая необходима для поддержания нормальной температуры тела, работы мышц и внутренних органов. Избыточное количество углеводов в организме животных откладывается в виде жира. Таким образом, углеводы в виде гликогена и жира являются резервными веществами в теле животных.

Материалы и оборудование: альбомы, плакаты, справочники.

Задание 1 Сравните показатели энергетической, протеиновой, минеральной и витаминной питательности отрубей пшеничных, отрубей овсяных, пшеничной, ржаной, овсяной и гороховой кормовой муки.

Задание 2. Сделайте заключение и выпишите корма с высоким и низким содержанием (в 1 кг корма) сухого вещества, сырой клетчатки, сырого протеина, амидов, безазотистых экстрактивных веществ, сахара, сырой золы.

Контрольные вопросы и задания

- 1. Чем отличаются корма животного происхождения от растительного?
- 2. Расскажите о классификации кормов и ее значении для организации полноценного кормления животных.
- 3. Какие корма относят к зеленым? Дайте характеристику химического состава и питательной ценности зеленых кормов.

Занятие 2. Макроэлементы, микроэлементы их значение в кормлении сельскохозяйственных животных и нормы скармливания.

Цель занятия: изучить значение макро и микроэлементов в кормлении сельскохозяйственных животных и нормы скармливания.

Методические указания

В кормлении животных наибольшее значение имеют кальций, фосфор, магний, калий, натрий, хлор и сера.

Кальций. В теле животных почти весь кальций находится в форме неорганических солей фосфорнокислого и углекислого кальция. У сельскохозяйственных животных плазма крови содержит в среднем 9-15 мг кальция в 100 мл. Сильно повышается содержание кальция в крови кур в период кладки яиц (до 40 мг в 100 мл).

В организме животного кальций служит материалом для построения костной ткани. Почти весь кальций находится в скелете и только около 1% — в остальных тканях. Кальций также необходим животным для регулирования реакции крови и тканевой жидкости, возбудимости мышечной и нервной ткани, свертывания крови. При недостатке кальция в кормах у молодых животных наблюдается заболевание — рахит, который проявляется в деформации скелета, искривлении трубчатых костей, позвоночника, грудной клетки из-за недостаточного окостенения. Наблюдается утолщение концов трубчатых костей. При этом изменяется состав крови, в ней сильно снижается содержание неорганического фосфора (до 20% от нормы) при малом изменении содержания кальция, по этому показателю рахит отличается от тетании, при которой резко падает содержание кальция в крови, а содержание фосфора остается в норме.

При недостатке кальция в кормах у взрослых животных появляется заболевание — остеомаляция, которая проявляется в болезненном размягчении и деформации костей в результате деминерализации.

В организации полноценного минерального питания большое значение имеют микроэлементы. Они принимают участие в регулировании основных физиологических процессов в животном организме — роста, развития, размножения, кроветворения, дыхания и др. Микроэлементы входят в состав гормонов, ферментов, витаминов, принимают активное участие в обменных функциях животного организма.

Своевременная добавка в рационы недостающих микроэлементов нормализует обмен веществ в организме, способствует повышению полноценности питания и продуктивности животных (табл.7).

Из микроэлементов наибольшее значение для животных имеют железо, медь, кобальт, цинк, марганец, йод и др.

Таблица 7 – Минеральные добавки

Добавка	Содержание в 100 г добавки, г			вки, г
	кальция	фосфора	азота	натрия
Источники кальция				
Известняки	33	0,1	-	-
Гуф известковый	29	-	-	-
Мел:				
неотмученный	37	-	-	-
отмученный	40	-	-	-
Мергель	20	-	-	-
Мука:				
ракушечная	37	-	-	-
мидийная	34	-	-	-
Зола древесная	26	1	-	-
Гравертин	39	-	-	-
Сапропель сухой	7	-	-	-
Источники кальция и фосфора	<u> </u>		I	<u> </u>
Мука костная	31	14	-	-
Уголь костный	35	13	-	-
Зола костная	34	16	-	-
Фосфорин	33	14	-	-
Преципитат кормовой	26	16	-	-
(дикальцийфосфат)				
Фосфориты	26,5	10,5	-	-
Фосфат обесфторенный:				
кормовой из апатитов	35	16	-	-
из Каратау	26	13	-	-
из подмосковных фосфоритов	24	12	-	-
Монокальцийфосфат кормовой	17,6	24	-	-
Грикальций фосфат	32	14,5	-	-
Кальций полифосфат	13,5	28,0	-	-
Источники кальция, фосфора, азота	1		1	·
Динатрийфосфат кормовой водный	-	8,6	-	-
Динатрицфосфат безводный	-	22	-	13
Натрия полифосфаты	-	26	-	23
Мононатрий кормовой	-	24	-	10
Моноаммонийфосфат кормовой	-	27	11	-
Диаммонийфосфат кормовой	-	25	19	-
Фосфат мочевины	-	20	23	-
Мочевина (карбамид)	-	-	46	-
Сульфат аммония (серы 25,9%)	-	-	21	-
Бикарбонат аммония	-	-	17	-

Материалы и оборудование: альбомы, плакаты, справочники.

Задание 1. Определить норму потребности в минеральных добавках и витаминах (в сутки) для дойной коровы живой массой 600 кг и суточным удоем 16 кг, и рассчитать фактическое содержание витаминов в рационе, при условии, что ее среднесуточный рацион состоит из 6 кг сена бобоворазнотравного, 20 кг кукурузного силоса, 8 кг кормовой свеклы, 3 кг пшеничных отрубей и 1 кг кукурузной дерти.

Определить разницу между фактическим содержанием витаминов в рационе и нормой. При необходимости рассчитать и возместить дефицит витаминов путем введения в рацион природных или синтетических витаминных добавок.

Контрольные вопросы и задания

1. Назовите источники минеральных веществ, необходимых для полноценного кормления животных и птицы.

Занятие 3. Витамины, их значение в кормлении сельскохозяйственных животных и нормы скармливания.

Цель занятия: изучить значение витаминов для животного организма. *Методические указания*

Здоровье и продуктивность животных зависят не только от кормления по рационам с достаточным количеством протеина, жира, углеводов и минеральных веществ, но и от обеспеченности животных высококачественными витаминными кормами. Значение витаминов для животного организма огромно. Полноценное витаминное питание животных способствует росту молодняка, улучшению воспроизводительной функции и повышению молочности у лактирующих животных, снижению затрат кормов на производство 1 кг молока и прироста массы, улучшению качества продукции, предупреждению заболеваний животных и др.

Недостаток или отсутствие витаминов В кормах вызывает значительный дефицит гиповитаминоз, тех ИЛИ иных (авитаминоз) в настоящее время встречается редко. У животных чаще встречаются витаминной недостаточности скрытые формы гиповитаминозы, которые протекают в слабо выраженной форме, без специфических проявления признаков. В ЭТОМ заметного гиповитаминозное состояние проявляется главным образом в замедлении роста, нарушении функций размножения, снижении продуктивности. Кроме этого, при недостатке витаминов в корме снижается витаминная ценность молока, мяса, яиц и другой продукции животноводства. Поэтому скрытые недостаточности витаминной причиняют большой животноводству и птицеводству.

Витаминная питательность кормов характеризуется наличием в них того или иного витамина и выражается в Международных единицах (МЕ). Содержание некоторых витаминов выражается также и в весовых единицах (мг) в расчете на 1 кг корма при натуральной влажности или 1 кг сухого вещества.

Все витамины, содержащиеся в кормах, различаются по растворимости и по физиологическому действию — по той роли, которую они выполняют в клеточном обмене животного организма. По первому признаку все витамины делятся на жирорастворимые и водорастворимые. К жирорастворимым витаминам относятся витамины А, Б, Е, К, к водорастворимым — витамины группы В и витамин С. По роли в клеточном обмене они подразделяются на витамины с биокаталитическим действием и витамины с индуктивным действием. Витамины, действующие биокаталитически, участвуют построении ферментов и являются их составными частями. К ним относятся витамины группы В и К. К витаминам с индуктивным действием относятся витамины, основное значение которых состоит поддержании дифференциации тканей и упорядочении клеточных структур. К ним относятся витамины А, В, Е и С.

При недостатке в рационах животных витаминов, во-первых, нарушается образование ферментов, а следовательно, протекание и регуляция биосинтеза; во-вторых, нарушаются специфические функции клеток, что влечет за собой снижение продуктивности животных (табл.8).

Материалы и оборудование: альбомы, плакаты, справочники.

Задание 1. Сравните по энергетической, протеиновой, минеральной и витаминной питательности, а также по содержанию аминокислот подсолнечный, соевый, кукурузный, хлопковый и льняной жмыхи (шроты). Выделите жмыхи, богатые витамином В5, метионином и лизином.

Таблица 8 - Витаминные препараты

Витаминный препарат	Активность (в расчете на 1 г)
Витамин А в масле (в 1 мл)	50-100 тыс. МЕ
Микровит А кормовой	325-500 тыс. МЕ
Кормовой препарат микробиологического	Не менее 5 мг Р-каротина
каротина (КПМК)	
Витамин D_2 в масле (1 мл)	180-200 тыс. МЕ
Видеин (D ₃)	200 тыс. МЕ
Облученные дрожжи (D_2)	6-20 тыс. МЕ
Витамин D ₃ в масле (1 мл)	50 тыс. МЕ
Гранувит Е	250 мг
Капсувит Е-25	250 мг
Масляный раствор витаминов A, D3, E (1мл)	А - 15 тыс. МЕ;
	D2- 15 тыс. ME; E - 15 мг
Тривитамин жировой A, D3, E (1 мл)	A - 70 тыс. ME; D2- 10 тыс.
	МЕ; Е - 70 мг
Витамин К3 (менадион)	940 мг
Викасол (К3)	950 мг
Тиамин (В ₁)	980 мг
Гранувит (В2)	500 мг
Витамин В ₂ (рибофлавин)	980 мг
Витамин В2 (кормовой)	10-20 мг
15	

Витамин В3	750 мг
Холинхлорид (В ₄) (1 мл)	700 мг
Никотиновая кислота (В5, РР)	980 мг
Никотинамид (В ₅ , РР)	980 мг
Пиридоксингидрохлорид (В ₆)	980 мг
Фолиевая кислота (B _c)	950 мг
Цианокобаламин (B ₁₂)	950 мг
Кормовой концентрат метанового брожения	100-150 мкг
(КМБ-12) витамина B ₁₂	

Материалы и оборудование: альбомы, плакаты, справочники.

Задание 1. Сравните по энергетической, протеиновой, минеральной и витаминной питательности, а также по содержанию аминокислот подсолнечный, соевый, кукурузный, хлопковый и льняной жмыхи (шроты). Выделите жмыхи, богатые витамином В5, метионином и лизином.

Контрольные вопросы:

1. Перечислите естественные источники витаминов и их синтетические препараты.

Тема 3. Особенности нормирования кормления сельскохозяйственных животных

Занятие 1. Особенности нормирования кормления крупного рогатого скота и овец.

Цель занятия: Освоить систему нормированного кормлени, составление рационов коров и овец с учетом их живой массы, продуктивности, возраста и упитанности.

Методические указания

Нормы кормлени коров рассчитывают по 34 показателям питательности. Они предназначены для животных со средней упитанностью.

Основным носителем ОЭ и питательных веществ служит сухое вещество (СВ) корма (рациона). Поэтому при составлении рационов для коров следует начинать с определения их потребности в ОЭ и питательных веществах с учетом их концентрации в 1 кг сухого вещества корма (рациона).

Недостаточное поступление энергии приводит к перерасходу кормов, потере упитанности и снижению удоев. При продолжительном недостатке СВ и энергии в рационе у животных нарушаются функция размножения и обмен веществ (риск возникновения кетоза). Избыток энергии в рационе приводит к ожирению животных, снижению оплодотворяемости.

Молодым коровам (I и II лактации) и истощенным необходимо увеличить энергетическую питательность рациона по сравнению со средними нормами на 1-2 ЭКЕ в сутки: первым - на рост, вторым на повышение упитанности.

Для стельных коров в последние 2 мес. лактации нормы рекомендуется увеличивать на 5-10%, что ускоряет восстановление живой массы и запасов питательных веществ в теле животных. При раздое коров в первые 2-3 мес. лактации, начиная с 10-12-го дня после отела, применяют авансированное кормление, то есть при нормировании берут удой выше фактического на 4-6 кг. Для высокопродуктивных первотелок рационы должны быть рассчитаны на удой выше фактического на 5 кг в первые 3 мес. лактации, на 4 кг - на 4-6-м месяце лактации.

Овцы относятся к жвачным травоядным животным. Они поедают в 1,5-2 раза больше видов растений, чем другие травоядные животные. Овцы едят множество трав культурной и естественной растительности, корнеклубнеплоды, зерно хлебных злаков и бобовых растений, семена многих других растений, кустарники, корни, древесную кору, мох, солому, мякину и др.

Поедаемость корма овцами сравнительно невелика. На 100 кг живой массы они поедают около 2,5 кг сухого вещества, меньше, чем крупный рогатый скот. Это объясняется тем, что у овец медленнее идет эвакуация корма из пищеварительного канала вследствие замедления перистальтики кишечника. Поэтому повышение уровня питания овец практически осуществляется путем увеличения концентрации сухого вещества рациона, а не увеличением поедаемости корма.

Материалы и оборудование: нормы и рационы кормления животных, таблицы.

Задание 1. Составьте рацион для стельной сухостойной коровы в 5-ю и 6-ю декады сухостоя, профилактирующий развитие послеродового пареза и кетоза. Живая масса коровы 500 кг, ожидаемый удой в третью лактацию удой 4500 кг.

Задание 2. Составьте рацион для коровы живой массой 500 кг, ниже средней упитанности и удоем 18 кг молока в сутки из следующих кормов: силос кукурузный, сено злаково-бобовое, солома и овсяная, свекла кормовая, барда зеновая сухая, минеральные добавки и препараты витаминов А и Б. Рассчитайте в нем содержание расщепляемого и нерасщепляемого протеина.

Задание 3. Определите норму кормления и составьте рацион для суягной матки романовской породы (последние 7-8 недель суягности) живой массой 50 кг, средней упитанности. Используйте следующие корма: сено разнотравное, силос кукурузный, травяную муку клеверную, дерть ячменную, минеральные добавки.

Задание 4. Составьте рацион для лактирующей матки шерстной породы (первые 6 недель лактации) живой массой 60 кг из следующих кормов: сено люцерновое, сенаж разнотравный, ячменная дерть, минеральные И витаминные добавки. Определите контроля протеинового методы минерального питания подсосных маток

Контрольные вопросы и задания

- 1. Какие основные элементы составляют систему нормированного кормления животных? Что входит в понятие технологической нормы кормления? Детализированные нормы кормления с.-х. животных, их сущность.
- 2. Дайте определение понятий о рационе, структуре рациона и типе кормления животных. Классификация типов кормления животных.
- 3. Какие методы контроля полноценности кормления применяются к разным видам и возрастным группам с.-х. животных и птице?
- 4. В чем заключаются особенности пищеварения и обмена веществ у жвачных животных? Роль микрофлоры и метаболитов ферментации кормов в преджелудках жвачных.

Занятие 2. Особенности нормирования кормления лошадей и свиней. Цель занятия: научиться составлять рацион кормления для лошадей и свиней.

Методические указания

Лошади требовательны к качеству кормов. Они не едят затхлые, кислые или цвелые корма. Клетчатка в пищеварительном тракте животных переваривается хуже, чем у жвачных животных, поэтому в их рационах содержание ее не должно составлять более 15—17% сухого вещества.

Лошади имеют относительно небольшой по объему желудок, и поэтому им скармливают корма 4—8 раз в сутки небольшими порциями. Имея крепкие зубы, лошади хорошо пережевывают целое зерно. Летом они почти всю ночь содержатся на пастбище, где и отдыхают ночью. Поскольку для мышечной работы лошадей необходимы значительные энергетические затраты, то в их рационы следует включать достаточное количество богатых энергией концентратов: зерно овса, ячменя, кукурузы (можно вместе с початками).

При определении потребности питательных веществ для лошадей учитывают их живую массу, физиологическое состояние (жеребость, лактацию), характер выполняемой работы (легкая, средняя, тяжелая).

Соотношение кормов, в % от питательности: рабочие лошади: легкая работа — концентраты — 20—30, грубые — 40—60, сочные — 20-40; средняя работа — концентраты — 35—45, грубые — 35—50, сочные — 30—50; тяжелая работа — концентраты — 50—55, грубые — 25—40, сочные — 10—25; жеребцы-производители — концентраты — 60—65, грубые — 30-40, сочные — 5—10; подсосные и жеребые кобылы — концентраты — 25—40, грубые — 35—45, сочные — 5—10; молодняк 12—24-месячного возраста — концентраты — 50—60, грубые — 30—35, сочные — 5-10. В летний период вместо грубых и сочных кормов используется зеленая масса.

Жеребцы-производители должны иметь постоянно заводскую упитанность. На 100 кг живой массы в период случки жеребцы получают 2 кормовые единицы, в другие периоды — 1,6 кормовые единицы. На каждую

кормовую единицу в случной период лошадей должно приходиться 125-130 г высокоценного переваримого протеина.

Эффективность использования энергии и питательных веществ рационов зависит от возраста, живой массы, физиологического состояния и типа кормления свиней. Энергетическую питательность рациона свиней оценивают по содержанию в нем ЭКЕ, обменной энергии (МДж), сухого вещества и концентрации клетчатки в сухом веществе. Чем выше концентрация переваримой энергии в сухом веществе рациона, тем выше коэффициент использования энергии на образование продукции. С увеличением среднесуточных приростов живой массы у свиней затраты энергии на единицу прироста снижаются

Материалы и оборудование: нормы и рационы кормления животных, таблицы, племенные книги лошадей разных пород.

Задание 1. Самостоятельно, при использовании справочных данных и учебника, определить нормы энергии и всех нормируемых веществ, разработать рацион на зимний период для рабочей лошади с живой массой 600 кг при средней рабочей нагрузке.

Задание 2. Определите норму кормления и составьте рацион на летний (или зимний) период для хряков живой массой 230, 270 и 310 кг при интенсивном использовании. Корма: овес, ячмень, кукуруза, жмых, горох, рыбная мука, обезжиренное молоко, травяная мука или зеленый корм, добавки.

Задание 3. Учитывая рекомендуемую концентрацию энергии и питательных веществ в 1 кг сухого вещества кормов составьте полнорационные кормовые смеси: а) для супоросной матки в возрасте до двух лет; б) для лактирующей свиноматки живой массой 200 кг с 12 поросятами. Корма: ячмень, кукуруза, горох, жмых, дрожжи кормовые, рыбная мука, травяная мука.

Контрольные вопросы и задания

- 1. Каковы особенности кормления лошадей, выполняющих разную по степени тяжести работу?
- 2. Устно опишите технику кормления лактирующей кобылы, потребность в ЭКЕ и питательных веществах.
 - 3. Как кормят молодняк рысистых и верховых пород?
- 4. Какие особенности пищеварения и обмена веществ отмечаются у свиней? Эффективность использования энергии и питательных веществ рационов у свиней в связи с возрастом.
- 5. Какая существует взаимосвязь между среднесуточными приростами у свиней и затратами энергии на единицу прироста с возрастом? Назовите основные источники энергии для свиней.
- 6. По каким показателям нормируют протеиновое питание у свиней? Какие корма используют для балансирования рационов по аминокислотному составу?

Занятие 3. Особенности нормирования кормления сельскохозяйственной птипы.

Цель занятия: нормы и рационы кормления животных, таблицы. *Методические указания*

Высокая продуктивность птицы (более 300 яиц в год на 1 несушку, средний суточный прирост живой массы цыплят-бройлеров 50-60 г в сутки при затратах корма 1,3-1,4 кг на 10 яиц и 1,7-1,9 кг на 1 кг прироста) может быть обеспечена только при использовании кормов высокого качества и рационов, сбалансированных по более чем 40 показателям питательности.

В птицеводстве применяют типы кормления: сухой, влажный и комбинированный.

Материалы и оборудование: нормы и рационы кормления животных, таблицы.

Задание 1. Составьте рацион для кур-несушек родительского стада кросса «Смена». Возраст кур 29 недель, яйценоскость 83 %.

Контрольные вопросы и задания

1.Почему уровень энергии в кормосмеси является регулятором энергетического питания и фактором нормирования кормления птицы? Взаимосвязь между уровнем обменной энергии и сырого протеина в рационе птицы. Уровень клетчатки в рационах и содержание доступной энергии для птицы.

- 2. Каковы особенности аминокислотного и витаминного питания птицы? Потребность птицы в незаменимых аминокислотах и витаминах и источники их поступления.
- 3. Потребность птицы в минеральных веществах и источники их поступления. Последствия несбалансированного минерального питания птицы.

Библиографическии список

- 1. Кормление животных: учебник/ под ред. И. Ф. Драганова, Н. Г. Макардева, В. В. Калашникова. В 2 т. М.: Изд-во РГАУ МСХА имени К. А. Тимирязева, 2010. Т. 1. 341 с.; Т. 2. 565 с.
- 2. Нормы и рационы кормления сельскохозяйственных животных : справочное пособие / под ред. А. П. Калашникова, В. И. Фисинина, В. В. Щеглова, Н. И. Клейменова. 3-е издание, переработанное и дополненное. М., 2003.-456 с.
- 3. Максимюк, Н.Н. Физиология кормления животных. Теория питания, прием корма, особенности пищеварения [Текст]: уч. пос. для вузов / Н.Н. Максимюк, В.Г. Скопичев. СПб.: Лань, 2004. 256с.
- 4.Максимюк, Н.Н. Физиология кормления животных. Теория питания, прием корма, особенности пищеварения [Текст]: уч. пос. для вузов / Н.Н. Максимюк, В.Г. Скопичев. СПб.: Лань, 2004. 256с.
- 5. ХОХРИН, С.Н. КОРМЛЕНИЕ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ [ТЕКСТ]: уч. для вузов / С.Н. ХОХРИН. М.: КОЛОСС, 2004. 692С.
- 6. Боярский, Л.Г. Технология кормов и полноценное кормление сельскохозяйственных жи- вотных[Текст] : уч. пос. для вузов и ср. уч. зав. /Л.Г. Боярский. Ростов н/Д: Феникс, 2001. -416с.
- 7. Васько, В.Т. Кормовые культуры России [Текст]: справочник / В.Т.Васько. СПб.: ПРОФИС, 2006. 328с.
- 8. Менькин, В.К. Кормление животных [Текст]: уч. для сред. спец. уч. зав. / В.К. Менькин. 2-е изд., пер. доп. М.: КолосС, 2004. 380с.

НАГАЕВ Алий Мухамедович

ОЦЕНКА ПИТАТЕЛЬНОСТИ КОРМОВ И НАУЧНЫЕ ОСНОВЫ ПОЛНОЦЕННОГО КОРМЛЕНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ

Методические указания к практическим занятиям аспирантам направления подготовки 36.06.01 «ВЕТЕРИНАРИЯ И ЗООТЕХНИЯ» направленность Частная зоотехния, технология производства продуктов животноводства

КОРРЕКТОР ЧАГОВА О.Х. РЕДАКТОР ЧАГОВА О.Х.

СДАНО В НАБОР 21.09.2015Г. ФОРМАТ 60х84/16 БУМАГА ОФСЕТНАЯ ПЕЧАТЬ ОФСЕТНАЯ УСЛ. ПЕЧ. Л. 1,39 ЗАКАЗ № 2121 ТИРАЖ 100 ЭКЗ.

Оригинал-макет подготовлен в Библиотечно-издательском центре СевКавГГТА 369000, г. Черкесск, ул. Ставропольск