МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ»

УТВЕРЖДАЮ:
Проректор по уне бной работе

1 ИО. Нагорная
2025г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Неорганическая и аналитическа	Кимих к
Уровень образовательной программы бакалаври	иат
Направление подготовки 35.03.	01 Лесное дело
Направленность (профиль): Лесное дело	
Форма обучения: очная (заочная	1)
Срок освоения ОП: 4 года (4 года 9 месян	цев)
Институт: Аграрный	
Кафедра разработчик РПД : Общеинженерные дисциплины	и естественнонаучные
Выпускающая кафедра: Лесное дело	
Начальник Учебно-методического управления	Семенова Л.У.
Директор института	Темижева Г.Р.
И.о.заведующего выпускающей кафедрой	Богатырева И.АА

СОДЕРЖАНИЕ

1. Цели освоения дисциплины	4
2. Место дисциплины в структуре образовательной программы	5
3. Планируемые результаты обучения по дисциплине	5
4. Структура и содержание дисциплины	6
4.1. Объем дисциплины и виды учебной работы	6
4.2. Содержание дисциплины	7
4.2.1. Разделы (темы) дисциплины, виды учебной деятельности и формы контроля	7
4.2.2. Лекционный курс	8
4.2.3. Лабораторный практикум	9
4.2.4. Практические занятия	9
4.3. Самостоятельная работа обучающегося	10
5. Перечень учебно-методического обеспечения для самостоятельной работы	11
обучающихся по дисциплине	
6. Образовательные технологии	11
7. Учебно-методическое и информационное обеспечение дисциплины	12
7.1. Перечень основной и дополнительной учебной литературы	12
7.2. Перечень ресурсов информационно-телекоммуникационной сети «Интер-	13
нет»	
7.3. Информационные технологии, лицензионное программное обеспечение	13
8. Материально-техническое обеспечение дисциплины	14
8.1. Требования к аудиториям (помещениям, местам) для проведения занятий	14
8.2. Требования к оборудованию рабочих мест преподавателя и обучающихся	14
8.3. Требования к специализированному оборудованию	14
9. Особенности реализации дисциплины для инвалидов и лиц с ограничен-	15
ными возможностями здоровья	
Приложение 1. Фонд оценочных средств	16
Приложение 2. Аннотация рабочей программы	42
Рецензия на рабочую программу	43
Лист переутверждения рабочей программы дисциплины	44

1. ЦЕЛИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целями освоения дисциплины «Неорганическая и аналитическая химия» являются: формирование системы знаний по теоретическим основам неорганической и аналитической химии, формирование естественно — научного мировоззрения будущих специалистов лесного дела, уяснение роли химии в решении комплекса проблем охраны окружающей среды. Получение навыков научного эксперимента, выполнение расчетов по результатам эксперимента и решению задач.

При этом задачами дисциплины являются:

- изучение строения неорганических веществ и зависимость их свойств от природы вещества;
- изучение факторов, определяющих самопроизвольное протекание различных химических процессов;
- изучение основ современной химии базы для усвоения последующих общебиологических и специальных дисциплин, а также базы для понимания химико-биологических аспектов, явлений и процессов различных отраслей народного хозяйства;
- ознакомить обучающихся с методикой выбора и анализа веществ, применяемых в технологических процессах;
- привить навыки расчетов с использованием основных понятий и законов стехиометрии, закона действующих масс, понятий водородный и гидроксильный показатели и расчетов, необходимых для приготовления растворов заданного состава;
- научить обучающихсяопределять направления и оптимальные условия протекания химических процессов;
- обучить методам эксперимента в химии, выработать умения пользоваться простейшим лабораторным оборудованием, химической посудой и измерительными приборами;
- формирование у обучающихся навыков изучения научной химической литературы и пользования современной химической терминологией.

2.МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

- **2.1.**Дисциплина «Неорганическая и аналитическая химия» относится к части, формируемой участниками образовательных отношений Блока 1. Дисциплины (модули),имеет тесную связь с другими дисциплинами.
- **2.2.** В таблице приведены предшествующие и последующие дисциплины, направленные на формирование компетенций дисциплины в соответствии с матрицей компетенций ОП.

Предшествующие и последующие дисциплины, направленные на формирование компетенций

№ п/п	Предшествующие дисциплины	Последующие дисциплины
1.	Знания, полученные на предыдущем	Почвоведение
2.	уровне образования	Агрохимия

3. ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОБУЧЕНИЯ

Планируемые результаты освоения образовательной программы (ОП) – компетенции обучающихся определяются требованиями стандарта по направлению подготовки 35.03.01Лесное дело и формируются в соответствии с матрицей компетенций ОП

№ п/ п	Номер/ индекс компе- тенции	Наименование компетенции (или ее части)	В результате изучения учебной дисциплины обучающиеся должны:
1	2	3	4
1.	ОПК-4	Способен реализовывать современные технологии и обосновывать их применение в профессиональной деятельности	ОПК-4. 1. Демонстрирует знанияосновных понятий и методов химии, основные законы неорганической и аналитической химии, классификацию и свойства химических элементов, веществ и соединений. ОПК-4. 2. Использует основные элементарные методы химического исследования веществ и соединений. ОПК-4. 3. Применяет инструментарий для решения химических задач; информацию о назначениях и областях применения основных химических веществ и их соединений.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. ОБЪЕМ ДИСЦИПЛИНЫ И ВИДЫ УЧЕБНОЙ РАБОТЫ

Очная форма обучения

Вид учебной работ	Ы	Всего ча- сов	Семестр І	
1		2	3	
Аудиторная контактнаяработа (всего	0)	72	72	
В том числе:				
Лекции (Л)	36	36		
Практические занятия (ПЗ)				
В том числе практическая подгот	говка	_	_	
Лабораторные работы (ЛР)		36	36	
В том числе практическая подгот	говка	-	-	
Контактная внеаудиторная работа, в	в том числе:	1,7	1,7	
Индивидуальные и групповые консуль	тации	1,7	1,7	
Самостоятельная работа обучающег	Самостоятельная работа обучающегося (СРО) (всего)			
В том числе:				
Курсовая работа (КР)		_	_	
Другие виды СРО:				
работа с лекциями, книжными и точниками	электронными ис-	10	10	
подготовка к лабораторным заня	МВИТ	10	10	
подготовка к текущему контроль	0	7	7	
подготовка к промежуточной атт	гестации	7	7	
Промежуточная аттестация	зачет (3), в том числе:	3	3	
промежуючная аптепация	Прием зачета, час	0,3	0,3	
итого:		100	100	
Общая трудоемкость	часов	108	108	
	зачетных единиц	3	3	

Заочная форма обучения

Вид учебной работ	ы	Всего часов	Семестр І		
1		2	3		
Аудиторная контактная работа (всег	ro)	10	10		
В том числе:					
Лекции (Л)		4	4		
Практические занятия (ПЗ)					
В том числе практическая подгот	говка	_	_		
Лабораторные работы (ЛР)		4	4		
В том числе практическая подгот		-	-		
Контактная внеаудиторная работа, н	в том числе:	1	1		
Индивидуальные и групповые консуль	тации				
Самостоятельная работа обучающег	95	95			
В том числе:					
Курсовая работа (КР)		_	_		
Другие виды СРО:					
работа с книжными и электронні	ыми источниками,	24	24		
просмотр видеолекций		24	24		
подготовка к лабораторным заня	МRИТ	24	24		
подготовка и выполнение контро	ольных работ	24	24		
подготовка к промежуточной атт	гестации	23	23		
	зачет (3), в том числе	3	3		
Промежуточная аттестация	0,3	0,3			
	3,7	3,7			
итого:		100	100		
Общая трудоемкость	часов	108	108		
	зачетных единиц	3	3		

4.2. СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.2.1. Разделы дисциплины, виды учебной деятельности и формы контроля Очная форма обучения

№ п/п	№ семестра	Наименование раздела дисциплины	Виды учебной деятельности, включая самостоятельную работу обучающихся (в ча- сах)					Формы текущего контроля успеваемо-	
	.		Л	ЛР	ПЗ	СРО	Все-	сти	
1	2	3	4	5	6	7	8	9	
1.	I	Строение вещества	4	2		4	10	Устный опрос Входящий тестовый контроль № 1 (1,2,3,4) Оформление и защита лаб. работ	
2.	I	Комплексные соединения	4	4		4	12	Устный опрос Оформление и защита лаб. работ	
3.	I	Энергетика химических процессов	2	4		2	8	Устный опрос Решение задач и упражнений	
4.	I	Кинетика химической реакции	6	6		6	18	Устный опрос Тестовый контроль № 2 (1) Оформление и защита лаб. работ	
5.	I	Растворы	6	6		6	18	Устный опрос Тестовый контроль № 3 (1,2,3) Оформление и защита лаб. работ	
6.	I	Окислительно- восстановительные реакции	6	6		6	18	Устный опрос Тестовый контроль № 4 (1) Оформление и защита лаб. работ	
7.	I	Химия элементов	4	4		3	11	Устный опрос Оформление и защита лаб. работ Тестовый контроль № 5 (1)	
8.	I	Аналитическая химия	4	4		3	11	Устный опрос Оформление и защита лаб. работ Подготовка к промежуточной ат- тестации	
	I	Внеаудиторная контактная работа					1,7	индивидуальные и групповые консульта- ции	
	I	Промежуточная аттеста- ция					0,3	Зачет	
И	гого:		36	36	-	34	108		

Заочная форма обучения

No		Наименование	1	•		і деяте.	льно- ятель-	Формы теку-		
п/	№	раздела дисципли-	1 -				ихся (в	щего контроля		
п	семестра	ны	1 7 7 7 7		успеваемости					
			Л	ЛР	ПЗ	CPO	Всего			
1	2	3	4	5	6	7	8	9		
1.	1	Строение вещества						Решение задач и		
								упражнений		
								Входящие ситуа-		
								ционные задачи и		
								контрольные		
			$\frac{1}{2}$	4	50	50	56	вопросы		
2.	1	Комплексные соеди-	2	4			30	30	Решение задач и	
		нения								
3.	1	Энергетика химиче-							Решение задач и	
		ских процессов								упражнений
4.	1	Кинетика химиче-								Решение задач и
		ской реакции						упражнений		
5.	1	Растворы						Решение задач и		
								упражнений		
6.	1	Окислительно-						Решение задач и		
		восстановительные	2	2		45	47	упражнений		
		реакции						• •		
7.	1	Химия элементов						Решение задач и		
								упражнений		
8.	1	Аналитическая хи-						Решение		
		ВИМ						контрольной ра-		
								боты		
	1	Внеаудиторная						индивидуальные		
		контактная работа					1	и групповые		
								консультации		
	1	Промежуточная ат-					0,3	Зачет		
		тестация					(3,7)	(CPO)		
И	гого:		4	6		95	108			

4.2.2. Лекционный курс

No /	Наименование	Наименование темы	Содержание раздела в дидактических	Всего	часов
п/п	раздела дис- циплины	лекции	единицах	ОФО	3ФО
1	2	3	4	5	6
		C	Семестр 1	· !	
1.	Строение вещества	Введение в неорганическую химию. Основные понятия и законы химии. Химическая природа веществ. Строение атома и химическая связь.	Современная модель строения атома. Квантовые числа. Строение электронных оболочек атомов. Строение ядра и радиоактивные превращения. Периодический закон и система элементов Д.И.Менделеева. Природа химической связи. Ковалентная связь. Гибридизация орбиталей. Ионная связь. Металлическая связь. Водородная связь.	4	
2.	Комплексные соединения	Комплексные соедине- ния	Теория Вернера. Номенклатура комплексных соединений. Химическая связь в комплексных соединениях. Устойчивость комплексных соединений. Классификация комплексных соединений.	4	
3.	Энергетика химических процессов	Основы химической термодинамики	Основные понятия. Первое начало термодинамики. Энтальпия. Стандартная энтальпия образования и сгорания. Закон Гесса. Второе начало термодинамики. Энтропия. Направление самопроизвольного протекания процессов. Энергия Гиббса.	2	2
4.	Кинетика химиче- ской реакции	Химическая кинетика: скорость реакции и методы её регулирования, колебательные реакции. Химическое и фазовое равновесие. Катализаторы и каталитические системы.	Скорость реакции. Зависимость скорости реакции от концентрации. Молекулярность и порядок реакции. Зависимость скорости от температуры. Каталитические реакции. Химическое равновесие.	6	
5.	Растворы	Растворы. Общие представления о растворах. Растворы. Растворы электролитов. Растворы. Ионное произведение воды. Гидролиз солей.	Общие представления о растворах. Механизм образования растворов. Свойства растворов. Растворы электролитов. Гидролиз солей. Буферные растворы. Дисперсные системы и их классификация.	6	
6.	Окислительно- восстановительные реакции	Окислительно- восстановительные реакции	Степень окисления. Окислительновосстановительные реакции. Характерные особенности ОВР. Типы ОВР. Методика составления ОВР.	6	2
7.	Химия элементов	Химия элементов	s-элементы. p-элементы. d-элемент	4	
8.	Аналитическая хи- мия	Аналитическая химия	Предмет аналитической химии и значение. Качественный анализ. Количественный анализ. Физико-химические и физические методы анализа.	4	

4.2.3. Лабораторный практикум

№ π/	Наименование раздела дисципли-	Наименование лабораторной	Содержание лабораторных работ	Всего часов		
П	ны	работы		0Ф0	3ФО	
1	2	3	4	5	6	
		Семе	стр 1			
1.	Строение вещества	Основные классы неорганической химии	Правила работы в лаборатории. Инструктаж по технике безопасности. Изучение распределения электронов по орбиталям, квантовые числа, периодического изменения свойств атомов. Изучение пространственного строения молекул с различными видами связи. Тест № 1.	2		
2.	Комплексные соединения	Комплексные со- единения	Составления уравнение диссоциации и составления названия комплексных соединений. Определения К _{н.}	4	4	
3.	Энергетика химических процессов	-	Расчет тепловых эффектов, изменения энтропии и термодинамических потенциалов химических процессов.	4		
4.	Кинетика химической реакции	Скорость химических реакций. Катализ. Химическое равновесие.	Расчеты скоростей реакций в зависимости от различных условий (природа и концентрация реагирующих веществ, температура). Расчеты смещения химического равновесия в зависимости от различных факторов. Тест № 2.	6		
5.	Растворы	Реакции в растворах электролитов. Гидролиз солей	Решение задач на вычисление концентрации растворов. Диссоциация кислот, оснований, солей в водных растворах. Составления ионных реакции и уравнений. Гидролиза различных типов солей. Тест № 3.	6		
6.	Окислительно- восстановительные реакции	Окислительно- восстановитель- ные реакции	Составление уравнений окислительно-восстановительных реакции методом электронного баланса и методом полуреакций. Тест № 4.	6	2	
7.	Химия элементов	Качественные реакции на анионы	s-элементы. p-элементы. d- элемент. Тест № 5.	4		
8.	Аналитическая хи- мия	Качественный и количественный анализ	Основные понятия качественного анализа	4		
ИТ	ОГО часов в семестре:			36	6	

4.2.4. Практические занятия

По данной дисциплине не предполагаются

4.3. САМОСТОЯТЕЛЬНАЯ РАБОТА ОБУЧАЮЩИХСЯ

Виды СРО Очная форма обучения

No	Наименование раздела	№	Виды СРО	Всего
п/п	дисциплины	п/п	энды өт ө	часов
1	2	3	4	5
	1 -	1	Семестр 1	I
1.	Строение вещества	1.1	Работа с конспектом, книгами и электронными	
			источниками	2
		1.2	Подготовка к лабораторному занятию	
		1.3	Подготовка к текущему контролю	
2.	Комплексные соедине-	2.1	Работа с конспектом, книгами и электронными	
	ния		источниками	4
		2.2	Подготовка к лабораторному занятию	
3.	Энергетика химиче-	3.1	Работа с конспектом, книгами и электронными	4
	ских процессов		источниками	4
4.	Кинетика химической	4.1	Работа с конспектом, книгами и электронными	
	реакции		источниками	
		4.2	Подготовка к лабораторному занятию	6
		4.3	Подготовка к текущему контролю	
5.	Растворы	5.1	Работа с конспектом, книгами и электронными	
			источниками	6
		5.2	Подготовка к лабораторному занятию	0
		5.3	Подготовка к текущему контролю	
6.	Окислительно-	6.1	Работа с конспектом, книгами и электронными	
	восстановительные		источниками	
	реакции	6.2	Подготовка к лабораторному занятию	6
		6.3	Подготовка к текущему контролю	
7.	Химия элементов	7.1	Работа с конспектом, книгами и электронными	
			источниками	2
		7.2	Подготовка к лабораторному занятию	3
		7.3	Подготовка к текущему контролю	
8.	Аналитическая химия	8.1	Работа с конспектом, книгами и электронными	
			источниками	2
		8.2	Подготовка к лабораторному занятию	3
		8.3	Подготовка к промежуточной аттестации	
итоі	О часов в семестре:	1		34

Заочная форма обучения

No	Наименование	No	Виды СРО	Всего
п/п	раздела дисциплины	п/п	виды СГО	часов
1	2	3	4	5
			Семестр 2	
1.	Строение вещества	1.1	Работа с конспектом, книгами и электронными	
			источниками	
		1.2	Подготовка и выполнение контрольных работ	
2.	Комплексные соеди-	2.1	Работа с конспектом, книгами и электронными	
	нения		источниками	
		2.2	Подготовка и выполнение контрольных работ	
		2.3	Просмотр видеолекций	50
3.	Энергетика химиче-	3.1	Работа с конспектом, книгами и электронными	30
	ских процессов		источниками	
		3.2	Подготовка и выполнение контрольных работ	
4.	Кинетика химической	4.1	Работа с конспектом, книгами и электронными	
	реакции		источниками	
		4.2	Подготовка и выполнение контрольных работ	
		4.3	Просмотр видеолекций	
5.	Растворы	5.1	Работа с конспектом, книгами и электронными	
			источниками	
		5.2	Подготовка и выполнение контрольных работ	
6.	Окислительно-	6.1	Работа с конспектом, книгами и электронными	
	восстановительные		источниками	
	реакции	6.2	Подготовка и выполнение контрольных работ	
7.	Химия элементов	7.1	Работа с конспектом, книгами и электронными	45
			источниками	
		7.2	Подготовка и выполнение контрольных работ	
8.	Аналитическая химия	8.1	Работа с конспектом, книгами и электронными	
			источниками	
		8.2	Подготовка и выполнение контрольных работ	
		8.3	Подготовка к промежуточной аттестации	
итоі	ГО часов в семестре:			95

5. ПЕРЕЧЕНЬ УЧЕБНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ ДЛЯ CAMOCTOЯ-ТЕЛЬНОЙ РАБОТЫ ОБУЧАЮЩИХСЯ ПО ДИСЦИПЛИНЕ

5.1. Методические указания для подготовки к лекционным и лабораторным занятиям по дисциплине «Неорганическая и аналитическая химия»

Обучение складывается из аудиторных занятий, включающих лекционный курс и лабораторные занятия, и самостоятельной работы. Основное учебное время выделяется на лабораторные занятия, на которых отрабатываются решения ситуационных задач, выполняются лабораторные работы с закреплением практических навыков, решаются тестовые задания.

По каждому разделу разработаны методические рекомендации для обучающихся. Работа обучающегося в группе формирует чувство коллективизма и коммуникабельность.

Текущий контроль усвоения предмета определяется устным опросом в ходе занятий, при решении типовых ситуационных задач, тестовых контрольных заданий и при выполнении контрольных работ.

По окончании курса проводится экзамен, включающий:

- собеседование по теоретическим вопросам дисциплины;
- решение ситуационных задач, включая трактовку результатов лабораторных и инструментальных исследований.

5.2. Методические указания для подготовки к самостоятельной работе обучающихся по дисциплине «Неорганическая и аналитическая химия»

Содержание внеаудиторной самостоятельной работы обучающихся по дисциплине «Неорганическая и аналитическая химия» включает в себя различные виды деятельности:

- чтение текста (учебника, первоисточника, дополнительной литературы);
- составление плана текста;
- конспектирование текста;
- работа со словарями и справочниками;
- подготовка к лабораторной работе;
- решение вариативных задач и упражнений;
- подготовка к контрольным работам;
- работа с электронными информационными ресурсами;
- полготовка к тестовым заданиям.

6. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

№ п/п	Виды учебной работы	Образовательные технологии	Все- го ча- сов
1	2	3	4
1.	Лекция: Комплексные соединения	Проблемная	4
2.	Лекция: Растворы	Проблемная	6
3.	Лекция:Окислительно-восстановительные реакции	Проблемная	6
4.	Лабораторная работа 2. Кинетика химических реакций	Практические методы выработки профессиональных умений	2
5.	Лабораторная работа 7. Окислительновосстановительные реакции	Практические методы выработки профессиональных умений	2
6.	Лабораторная работа 9. Качественные реакции на анионы	Практические методы выработки профессиональных умений	2

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИС-ЦИПЛИНЫ

7.1. Перечень основной и дополнительной учебной литературы

Список основной литературы Аналитическая химия: учебное пособие / А. И. Апарнев, Т. П. Александрова, А. А. Казакова, О. 1. В. Карунина. — Новосибирск : Новосибирский государственный технический университет, 2015. — 92 с. — ISBN 978-5-7782-2710-1. — Текст: электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/91705.html — Режим доступа: для авторизир. пользователей 2. Аналитическая химия: учебное пособие / Т. П. Александрова, А. И. Апарнев, А. А. Казакова, О. В. Карунина. — Новосибирск : Новосибирский государственный технический университет, 2016. — 76 с. — ISBN 978-5-7782-2951-8. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/91322.html — Режим доступа: для авторизир. пользователей Апарнев, А. И. Аналитическая химия и физико-химические методы анализа: учебное пособие / 3. А. И. Апарнев, А. А. Казакова, Т. П. Александрова. — Новосибирск : Новосибирский государственный технический университет, 2018. — 139 с. — ISBN 978-5-7782-3611-0. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/91180.html — Режим доступа: для авторизир. пользователей Полуэктова, В. А. Аналитическая химия. Химические методы анализа: учебное пособие / В. А. Полуэктова. — Белгород: Белгородский государственный технологический университет им. В.Г. Шухова, ЭБС АСВ, 2018. — 131 с. — Текст : электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. — URL: https://www.iprbookshop.ru/92239.htmlРежим доступа: для авторизир. пользователей Список дополнительной литературы Кочкаров, Ж. А. Неорганическая химия в уравнениях реакций: учебное пособие / Ж. А. Кочкаров. — Нальчик : Кабардино-Балкарский государственный университет им. Х.М. Бербекова, 2011. — 306 с. — Текст : электронный // Цифровой образовательный ресурс IPR SMART : [сайт]. — URL: https://www.iprbookshop.ru/110226.html— Режим доступа: для авторизир. пользователей Рябов, М. А. Общая, неорганическая и аналитическая химия: конспект лекций / М. А. Рябов, Р. 6. В. Линко. — Москва: Российский университет дружбы народов, 2018. — 95 с. — ISBN 978-5-209-08528-7. — Текст: электронный // Цифровой образовательный ресурс IPR SMART: [сайт]. — URL: https://www.iprbookshop.ru/104226.html — Режим доступа: для авторизир. пользователей

7.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»

http://window.edu.ru- Единое окно доступа к образовательным ресурсам; http:// fcior.edu.ru - Федеральный центр информационно-образовательных ресурсов; http://elibrary.ru - Научная электронная библиотека.

7.3. Информационные технологии, лицензионное программное обеспечение

Лицензионное программное обеспечение	Реквизиты лицензий/ договоров				
Microsoft Azure Dev Tools for Teaching	Идентификатор подписчика: 1203743421				
1. Windows 7, 8, 8.1, 10	Срок действия: 30.06.2022				
2. Visual Studio 2008, 2010, 2013, 2019	_				
5. Visio 2007, 2010, 2013	(продление подписки)				
6. Project 2008, 2010, 2013					
7. Access 2007, 2010, 2013 ит. д.					
MS Office 2003, 2007, 2010, 2013	Сведения об OpenOffice: 63143487,				
	63321452, 64026734, 6416302, 64344172,				
	64394739, 64468661, 64489816, 64537893,				
	64563149, 64990070, 65615073				
	Лицензия бессрочная				
Антивирус Dr. Web Desktop Security Suite	Лицензионный сертификат				
	Серийный № 8DVG-V96F-H8S7-NRBC				
	Срок действия: с 20.10.2022 до 22.10.2023				
Консультант Плюс	Договор № 272-186/С-23-01 от 20.12.2022 г.				
Цифровой образовательный ресурс	Лицензионный договор №10423/23П от				
IPRsmart	30.06.2023 г.				
	Срок действия: с 01.07.2023 до 01.07.2024				
Бесплатное ПО					
Sumatra PDF, 7-Zip					

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

8.1. Требования к аудиториям (помещениям, местам) для проведения занятий:

- 1. Учебная аудитория для проведения занятий лекционного типа:
- набор демонстрационного оборудования и учебно-наглядных пособий, обеспечивающих тематические иллюстрации: проектор, экран, ноутбук;
- специализированная мебель: стол преподавательский, стул для преподавателя, стол ученический, стул ученический, доска ученическая, тумба кафедра.
- 2. Учебная аудитория для проведения занятий лабораторного типа, групповых и индивидуальных консультаций, текущего контроля и промежуточной аттестации:
- технические средства обучения: монитор Acer TFT 17, системный блок iRuErgo-Corp 121W
- специализированная мебель: доска ученическая, столы однотумбовые, столы ученические, стулья мягкие, стулья ученические.
- 3. Помещение для самостоятельной работы.

Библиотечно-издательский центр.

Отдел обслуживания печатными изданиями: комплект проекционный, мультимедийное оборудование: экран настенный, проектор, ноутбук, рабочие столы на 1 место, стулья.

8.2. Требования к оборудованию рабочих мест преподавателя и обучающихся

1. рабочее место преподавателя, оснащенное компьютером с доступом к сети Интернет;

2. рабочие места обучающихся, оснащенные лабораторными столами, стульями;

8.3. Требования к специализированному оборудованию:

- 1. Лабораторное оборудование: столы лабораторные для химических исследований, стулья лабораторные без подлокотника, вытяжные шкафы, штативы, спиртовки, мешалкимагнитные, шпатели, электроплитка.
- 2. Лабораторная посуда: фарфоровые тигли, эксикаторы, стеклянные стаканы вместимостью 250, 100 и 50 мл, мерные цилиндры вместимостью 250, 100, 50 и 10 мл, индикаторная бумага (универсальная, красный лакмус, синий лакмус), стеклянные палочки, стеклянные пробирки, бюретки вместимостью 25 мл, капельные пипетки, пипетки, промывалки, мерные колбы вместимостью 50 мл, спиртовые термометры 0-100°С, пипетки Мора вместимостью 10 мл, конические колбы для титрования вместимостью 100 и 250 мл.
 - 3. Химические реактивы согласно лабораторному практикуму.

9. ОСОБЕННОСТИ РЕАЛИЗАЦИИ ДИСЦИПЛИНЫ ДЛЯ ИНВАЛИДОВ И ЛИЦ С ОГРАНИЧЕННЫМИ ВОЗМОЖНОСТЯМИ ЗДОРОВЬЯ

Для обеспечения образования инвалидов и обучающихся с ограниченными возможностями здоровья разрабатывается (в случае необходимости) адаптированная образовательная программа, индивидуальный учебный план с учетом особенностей их психофизического развития и состояния здоровья, в частности применяется индивидуальный подход к освоению дисциплины, индивидуальные задания: рефераты, письменные работы и, наоборот, только устные ответы и диалоги, индивидуальные консультации, использование диктофона и других записывающих средств для воспроизведения лекционного и семинарского материала.

В целях обеспечения обучающихся инвалидов и лиц с ограниченными возможностями здоровья комплектуется фонд основной учебной литературой, адаптированной к ограничению электронных образовательных ресурсов, доступ к которым организован в БИЦ Академии. В библиотеке проводятся индивидуальные консультации для данной категории пользователей, оказывается помощь в регистрации и использовании сетевых и локальных электронных образовательных ресурсов, предоставляются места в читальном зале.

1. ПАСПОРТ ФОНДА ОЦЕНОЧНЫХ СРЕДСТВ ПО ДИСЦИПЛИНЕ

Неорганическая и аналитическая химия

1. Компетенции, формируемые в процессе изучения дисциплины

Индекс	Формулировка компетенции
	Способен реализовывать современные технологии и обосновывать их применение в профессиональной деятельности

2. Этапы формирования компетенции в процессе освоения дисциплины

п/п	Разделы (темы) дисципли-	Формируемые компетенции (коды)
	ны	ОПК-4
1.	Строение вещества	+
2.	Комплексные соединения	+
3.	Энергетика химических процессов	+
4.	Кинетика химической реакции	+
5.	Растворы	+
6.	Окислительно-восстановительные реакции	+
7.	Химия элементов	+
8.	Аналитическая химия	+

3. Индикаторы достижениякомпетенций, формируемых в проце	ессе изучения дисциплины

Планируемые результаты обучения (показатели достижения		Критерии оценива	Средства оценивания результатов обучения			
заданного уровня освоения компетенций) Индикаторы достижения компетенции		удовлетв.	хорошо	отлично	Текущий контроль	Промежуточная аттестация
ОПК – 4 Способен реали	-					lo.
ОПК-4. 1. Демонстриру-	Фрагментарные	Неполные знания	Сформированные, но		ОФО: - Опрос по теме заня-	Зачет
-оп хианияосновных по-	знания основных	основных понятий		систематические зна-	тия,	
нятий и методов химии,	понятий и мето-	и методов химии, основных законов	ные пробелы, знания основных понятий и		- тестирование,	
основные законы не- органической и ана-	дов химии, основных законов не-	неорганической и	методов химии,	методов химии, основ-	- защита отчетов по	
питической химии,	органической и	аналитической хи-	основных законов		лабораторным ра-	
классификацию и	аналитической	мии, классифика-	неорганической и	ческой и аналитиче-	OOTAM	
свойства химических	химии, классифи-	ции и свойств хи-	аналитической хи-	ской химии,	3ФО:	
элементов, веществ и	кации и свойств	мических элемен-	мии, классификации	классификации и	- защита отчетов по лабораторным и	
соединений.	химических	тов, веществ и со-	и свойств химиче-	свойств химических	контрольным ра-	
	элементов, ве-	единений.	ских элементов, ве-	элементов, веществ и	ботам	
	ществ и соедине-		ществ и соединений.	соединений.	_	
	ний. Отсутствие					
ОПУ 4.2. Ионолируст	знаний	D	D	X 7		
ОПК-4. 2. Использует	Фрагментарное	В целом успеш-	В целом успешное,	Успешное и система-		

но содержащее от-

дельные пробелы

умение использо-

элементарные мето-

ды химического ис-

следования веществ

вать основные

и соединений.

тическое умение ис-

пользовать основные

элементарные методы

химического исследо-

вания веществ и со-

единений.

но

умение использо-

элементарные ме-

тоды химического

исследования ве-

стематическое

ное,

неси-

основные

основные элементарные умение использо-

вать основные

элементарные ме-

исследования ве-

ществ и соедине-

ний. Отсутствие

умений

тоды химического вать

методы химического

соединений.

исследования веществ и

		ществ и соедине- ний.		
ОПК-4. 3. Применяет	Фрагментарное	В целом успеш-	В целом успешное,	Успешное и
инструментарий для	владение	ное, но не си-	но сопровождающее-	систематическое
решения химических	инструментарием	стематическое вла-	ся отдельными	владение
задач; информацию о	для решения	дение инструмента-	ошибками владение	инструментарием для
назначениях и областях	химических задач;	рием для решения	инструментарием	решения химических
применения основных	методами анализа	химических задач;	для решения химиче-	1
химических веществ и	физических	методами анализа	ских задач; методами	_
их соединений.	явлений в	физических явле-	1 =	явлений в
		ний в технических		технических
	устройствах и	устройствах и си-	1	устройствах и
	системах;	стемах; информа-	системах; информа-	системах;
	информацией о	цией о назначении	цией о назначении и	
		и областях приме-	областях применения	назначении и областях
	областях	нения основных	основных химиче-	применения основных
	применения	химических ве-	ских веществ и их	химических веществ и
	основных	ществ и их соеди-	соединений.	их соединений.
	химических	нений.		
	веществ и их			
	соединений.Отсут			
	ствие навыков			

4. Комплект контрольно-оценочных средств по дисциплине Вопросы к зачету

по дисциплине Неорганическая и аналитическая химия

- **1.** Основные положения современной модели строения атома. Энергетические уровни и подуровни атома; порядок заполнения электронных оболочек; способы записи электронных и электронно-графических формул атома.
- **2.** Квантовые числа, их значение, физический смысл. Принцип Паули. Принцип наименьшей энергии. Правила Хунда.
- **3.** Современная формулировка периодического закона и структура периодической системы Д.И. Менделеева. Периодичность изменения свойств атомов элементов: энергий ионизации, сродства к электрону, электроотрицательности, радиусов; периодический характер изменения химических свойств по группам, периодам.
- **4.** Типы и характеристики химической связи: электрические дипольные моменты, степень ионности, направленность и насыщенность, энергия и длина связи. Ионная связь и ее свойства.
- 5. Ковалентная связь и ее свойства. Механизмы образования и типы ковалентной связи.
- **6.** Геометрическое строение молекул. σ и π -связи, Типы гибридизации.
- 7. Металлическая связь. Типы кристаллических решеток. Водородная связь.
- **8.** Комплексные соединения. Основные положения теории Вернера. Классификация комплексных соединений. Номенклатура, диссоциация комплексных соединений. Константа нестойкости комплекса.
- **9.** Понятие о внутренней энергии, энтальпии, энтропии. Тепловые эффекты химических реакций. Закон Гесса и следствие из него. Теплота (энтальпия) образования. Свободная энергия Гиббса. Направление химических реакций.
- **10.** Кинетика химической реакции. Факторы, влияющие на скорость химической реакции в гомогенных и гетерогенных системах. Закон действующих масс. Правило Вант-Гоффа. Катализ и катализаторы.
- **11.** Химическое равновесие. Константа равновесия. Факторы, влияющие на смещение химического равновесия. Принцип Ле-Шателье.
- 12. Общая характеристика растворов. Химическая теория растворов. Способы выражения концентрации растворов: массовая доля, молярность, моляльность, нормальность.
- **13.** Растворимость. Зависимость растворимости твердых веществ и газов от температуры. Насыщенные, ненасыщенные растворы. Сольваты, гидраты, кристаллогидраты.
- **14.** Растворы электролитов. Сильные и слабые электролиты. Теория электролитической диссоциации Аррениуса. Степень и константа диссоциации. Водородный показатель. Гидролиз солей.
- **15.** Общие свойства разбавленных растворов. Понижение давления насыщенного пара над раствором. Закон Рауля. Понижение температуры замерзания и повышение температуры кипения раствора. Осмос. Осмотическое давление. Закон Вант-Гоффа.
- **16.**Окислительно-восстановительные реакции. Степень окисления, окислители и восстановители; методы составления уравнений окислительно-восстановительных реакций. Классификация OBP.
- **17.** Особенности строения атомов, способы получения, свойства s-элементов и их соединений.
- 18. Особенности строения атомов, способы получения, свойства р-элементов и их соединений.
- 19. Особенности строения атомов, способы получения, свойства d-элементов и их соединений.
- 20. Предмет и задачи аналитической химии. Классификация методов анализа.
- 21. Качественный и количественный анализ.
- 22. Химические и физико-химические методы анализа.

Кейс-задания

по дисциплине Неорганическая и аналитическая химия

Кейс-задание № 1 «Классы неорганических соединений»

Опыт. Получение средних солей

- **а) Реактивы:** раствор хлорида бария 1 н., раствор сульфата натрия 1 н., пробирка Налить в пробирку 3-4 капли раствора хлорида бария, добавить 3-4 капли раствора сульфата и натрия.
 - **б) Реактивы:** раствор сульфата меди 1 н., цинк металлический, пробирка Налить в пробирку 3-4 капли раствора сульфата меди, бросить кусочек цинка.
- **в) Реактивы:** насыщенный раствор гидроксида кальция, оксид углерода (IV), аппарат Киппа

Налить в пробирку до 1/3 объема раствора гидроксида кальция (известковая вода) и пропустить через него оксид углерода (IV) (углекислый газ) из аппарата Киппа до появления мути.

Задание. Запись данных опыта.

- 1) Отметьте изменения в пробирках в ходе проведения опытов.
- 2) Напишите уравнения химических реакций, протекающих в пробирках.
- 3) Под каждой из реакций укажите признак реакции (например, белый осадок, обесцвечивание и т.п.)
 - 4) Назовите все продукты реакции, за исключением воды.
- 5) Сформулируйте вывод: реакциями между какими классами неорганических соединений можно получить средние соли?

Кейс-задание № 2 «Химическое равновесие и кинетика»

Опыт. Зависимость скорости реакции от концентрации реагирующих веществ

Реактивы и оборудование: раствор серной кислоты 2 н., раствор тиосульфата натрия (Na2S2O3) 1н., дистиллированная вода, четыре мерные пробирки, капельницы или пипетки, секундомер

Тиосульфат натрия реагирует с серной кислотой по следующему уравнению реакции: $Na2S2O3 + H2SO4 = Na2SO4 + 5O2 + H2O + S \downarrow$

Признаком протекающей реакции является образование мути при выпадении серы в осадок.

Для проведения опыта в четырех пробирках приготовьте равные объемы растворов тиосульфата натрия различной концентрации, для этого внесите в пробирки 4, 6, 8 и 12 капель тиосульфата и доведите объем в пробирках до 12 капель добавив в каждую воду, как указано в таблице 1.

Затем в 1-ю пробирку добавьте 1 каплю серной кислоты, одновременно включив секундомер. Проследите, чтобы капля не попала на стенки пробирки.

Как только появится муть, выключите секундомер и занесите результата в таблицу 1. Повторите опыт с 2, 3 и 4-й пробирками.

Задание. Запись данных опыта.

1) Занесите в таблицу 1 данные, проведенных исследований

Таблица 1- Данные опыта

$\mathcal{N}_{\underline{0}}$	Количество капель			Общее	Относительна	Время	Относительна	
пробир-	Раствор	H2	Раство	число	Я	появлени	я скорость	
ки	Na2S2O	О	p	капель	концентрация.	я мути,	реакции 1/t,	l
	3		H2SO4	,	Na2S2O3,	t, cek	сек1	ı
				Vобщ.	Сотн.			ı
								1
1	4	8	1	13				l
2	6	6	1	13				l

3	8	4	1	13		
4	12	_	1	13		

- 2) Рассчитайте относительную практическую скорость реакции для каждого случая (1/t), зная время реакции. Занесите в таблицу 1.
- 3) Рассчитайте относительную концентрацию тиосульфата: принимая концентрацию в первой пробирке с 4-я каплями Сотн = 1, с 6-ю каплями Сотн = 1,5 и т.д. Занесите данные в таблицу 1.
- 4) Постройте график зависимости относительной практической скорости реакции от относительной концентрации тиосульфата натрия, откладывая значения 1/t уа оси X и Сотн. уа оси Y.
- 5) Сформулируйте вывод о зависимости скорости реакции от концентрации тиосульфата натрия при данных условиях.

Кейс-задание № 3 «Растворы электролитов»

Опыт. Характер диссоциации гидроксидов

Получение гидроксида магния.

Реактивы: раствор хлорида магния 1 н., раствор гидроксида натрия 1 н., раствор соляной кислоты 1 н.

В две пробирки ввести по 5-6 капель 1 н. раствора хлорида магния и добавить в каждую по 5-6 капель 1н. раствора гидроксида натрия.

В первую пробирку к осадку добавить 8-10 капель 1 н. раствора соляной кислоты, а в другую 8-10 капель 1 н. раствора гидроксида натрия.

Задание. Запись данных опыта

- 1) Какие признаки реакций Вы наблюдаете? В каком случае наблюдается растворение осадка?
 - 2) Напишите молекулярные и ионно-молекулярные уравнения реакции:

получения гидроксида магния;

гидроксида магния с соляной кислотой,

гидроксида магния с гидроксидом натрия.

Какая реакция не идет?

3) Каков характер диссоциации гидроксида магния? Запишите уравнение диссоциации гидроксида магния.

Кейс-задание № 4 «Основы электрохимии»

Опыт. Цинково-медный гальванический элемент

Приборы и реактивы: растворы: CuSO4, 1 н , ZnSO4, 1 н , КС1 (нас.); электроды – цинковый и медный; вольтметр; стаканы вместимостью 200 мл, полоски фильтровальной бумаги.

Собирают гальванический элемент: в один стакан наливают 100 мл раствора соли цинка, в другой — 100 мл соли меди, соединяют их электролитическим ключом (полоски фильтровальной бумаги, смоченные раствором хлорида калия). В растворы солей опускают соответствующие им электроды. Во внешней цепи гальванического элемента соединяют электроды с вольтметром. При подключении прибора необходимо строго соблюдать полярность.

Задание. Запись данных опыта.

- 1) Зафиксируйте показания вольтметра: Ефактич = В,
- 2) Рассчитайте теоретически напряжение гальванического элемента, пользуясь значениями стандартных электродных потенциалов Етеор = B,
- 3) Вычислите КПД изучаемого гальванического элемента: КПД = Ефакт./ Етеор.·100%.
 - 4) Изобразите схему гальванического элемента.

5) Напишите уравнения реакций, протекающих на электродах гальванического элемента, и суммарное уравнение химической реакции, в результате которой возникает электрический ток в данном элементе.

Кейс-задание № 5 «Коррозия и защита металлов и сплавов»

Опыт. Коррозия сплавов металлов

Исследование механизма различных видов коррозии металлов

Реактивы и материалы: цинковая и медная пластины с зажимом; 2 н раствор H2SO4, дистиллированная вода.

Заполнить стакан на 2/3 раствором серной кислоты.

Опустить в раствор цинковую и медную пластины, следя, чтобы пластины не контактировали друг с другом. Зафиксировать выделение водорода на одной из пластин.

Соединить с помощью зажима цинковую и медную пластины, следя, чтобы пластины контактировали друг с другом. Что изменилось? Почему?

Задание. Запись данных опыта.

- 1) Сделайте выводы, где укажите механизм коррозии металла в разных случаях: при замкнутой и разомкнутой цепи гальванического элемента.
 - 2) Напишите схему коррозии цинка в присутствии меди в кислоте.

Кейс-задание № 6 «Химия вяжущих веществ»

Опыт. Идентификация качественного состава портландцемента и реакции среды его раствора

Реактивы: портландцемент, дистиллированная вода, фенолфталеин, 1 н. раствор Na2CO3

Оборудование: пробирки, стеклянная палочка, пипетка, центрифуга

В пробирку насыпьте на кончике шпателя портландцемента и добавьте 5 мл воды. В течение 5 мин. энергично встряхивайте содержимое пробирки, затем дайте отстояться 15 мин. или отцентрифугируйте. Центрифугат (верхний слой жидкости) отберите при помощи пипетки в 2 пробирки, в одну добавьте 2 капли фенолфталеина в другую 5 капель 1 н. Na2CO3.

Задание. Сделайте запись данных опыта.

- 1) Составьте молекулярное и ионное уравнения гидролиза ортосиликата кальция по 1-й ступени
- 2) Укажите какие продукты гидролиза были обнаружены при помощи реакций фенолфталеина и при взаимодействии с карбонатом натрия, укажите признаки реакции
- 3) Составьте молекулярное и ионное уравнения образования осадка при добавлении к центрифугату Na2CO3

Вопросы для собеседования

по дисциплине Неорганическая и аналитическая химия

Тема: Основные классы неорганической химии

- 1. Дайте формулировку понятий оксидов:
- а) кислотного;
- б) основного;
- в) амфотерного.

Приведите примеры оксидов: а) кислотных; б) основных; в) амфотерных; г) несолеобразующих (безразличных).

- 2. Напишите формулы ангидридов указанных кислот: H_2SO_4 , H_3BO_3 , $H_2P_2O_7$, HClO, $HMnO_4$.
- 3. Выведите формулы кислотных оксидов из формул следующих кислот: HNO_2 , H_2MnO_4 , H_3PO_4 , HNO_3 , H_3BO_3 .

- 4. Напишите формулы оксидов, которые можно получить, разлагая нагреванием следующие гидроксиды: LiOH, $Cu(OH)_2$, H_3AsO_4 , $Cr(OH)_3$, H_2SiO_3 , H_2SO_4 .
 - 5. Напишите уравнения реакций между следующими оксидами:
 - а) оксид кальция и оксид азота (V);
 - б) оксид серы (VI) и оксид меди (II);
 - в) оксид фосфора (V) и оксид калия;
 - г) оксид железа (III) и оксид кремния (IV).
- 6. Какие из следующих веществ будут реагировать с оксидом азота (V): $Ca(OH)_2$; H_2SO_4 ; $MgCl_2$; K_2O ; H_2O ; SO_2 ?
- 7. Дайте формулировку понятий кислот. Приведите примеры бескислородосодержащих кислот.
 - 8. Приведите примеры кислот: а) одноосновных; б)двухосновных; в) трехосновных.
- 9. Что такое основание? Приведите примеры растворимых и нерастворимых оснований.
 - 10. Какие вещества называют солями?

Тема: Комплексные соединения

- 1. Какие соединения называются комплексными?
- 2. Какие молекулы и ионы могут являться лигандами в комплексных соединениях?
- 3. Назовитесоединения: $[Ni(NH_3)_6]SO_4$, $[Ag(NH_3)_2]NO_3$, $[Zn(H_2O)_4]SO_4$, $[Cr(H_2O)_6]Cl_3$, $K_3[Fe(CN)_6]$, $Na_3[Ag(S_2O_3)_2]$. Напишите уравнения диссоциации этих соединений в водных растворах.
 - 4. Напишите константы устойчивости вышеперечисленных комплексных ионов.
- 5. Приведите примеры реакций, которые способны разрушить вышеперечисленные комплексные ионы.
- 6. Определите заряд комплексного иона, координационное число и степень окисления комплексообразователя в соединениях: $K_4[Fe(CN)_6];\ Na[Ag(NO_2)_2];\ K_2[MoF_8];\ [Cr(H_2O)_2(NH_3)_3Cl]Cl_2.$
- 7. Определите заряд комплексного иона, координационное число и степень окисления комплексообразователя в соединениях: $[Cu(NH_3)_4]SO_4$; $K_2[PtCl_6]$; $K[Ag(CN)_2]$; $Rb[SbBr_6]$.
- 8. Определите заряд комплексного иона, координационное число и степень окисления комплексообразователя в соединениях: $K[SbCl_6]$; $Na[Sb(SO_4)_2]$; $K_4[Fe(CN)_6]$; $K_4[TiCl_8]$; $K_2[HgI_4]$.

Тема: Кинетика химической реакции

1. Что такое гомогенная и гетерогенная реакции?

Привести примеры

- 2. Что такое скорость химической реакции? Чем измеряется скорость химических реакций? Какие факторы влияют на скорость химических реакций?
 - 3. Сформулируйте закон действия масс и приведите его математическое выражение.
- 4. Что называется константой скорости химической реакции и каков физический смысл этой величины?
 - 5. Напишите выражение закона действия масс для реакций:

 $2NaOH + H_2SO_4 = Na_2SO_4 + 2H_2O$

 $CaO + CO_2 = CaCO_3$

 $N_2 + 3H_2 = 2NH_3$

- 6. Что такое катализ? Катализатор? В чем принцип действия катализатора?
- 7. Какие реакции называют обратимыми? Приведите примеры.
- 8. Чему равна константа равновесия обратимой реакции?
- 9. Сформулируйте принцип Ле-Шателье.

Тема: Растворы

- 1. Какие способы выражения концентрации раствора существуют?
- 2. Что такое титр раствора? Чем он отличается от плотности?
- 3. В каких единицах выражается массовая доля, молярная, моляльная концентрации раствора, титр?
 - 4. Для чего применяется метод кислотно-основного титрования?
- 5. Какие вещества нельзя использовать для приготовления стандартных растворов в кислотно-основном титровании? Почему?
- 6. Напишите уравнение реакции сильной кислоты с солью слабой кислоты в молекулярном, ионном и сокращенном ионом виде.
 - 7. Что такое жесткость воды? В каких единицах она выражается?

Тема: Окислительно-восстановительные реакции

1. Что такое окислитель, восстановитель, степень окисления?

Задание 1 Одинаковое число электронов содержат частицы

- 2. Могут ли данные вещества проявлять в реакциях свойства окислителя: Mg, HNO_2 , HClO, S, Cr_2O_3 , KOH? Приведите примеры реакций.
- 3. Приведите 3 примера веществ, проявляющих как свойства окислителя, так и восстановителя.
- 4. Можно ли окислить ионы Fe^{2+} хлором в стандартные условиях? В обосновании ответа приведите стандартные потенциалы полуреакций.
- 5. Можно ли окислить ионы Fe^{2+} иодом в стандартных условиях? В обосновании ответа приведите стандартные потенциалы полуреакций.

Комплект тестовых заданий

по дисциплине Неорганическая и аналитическая химия

ОПК-4 ТЕСТ № 1

I. Строение атома. Квантовые числа. Строение электронных оболочек атомов.

1) Al ³⁺ и N ³⁻
<mark>2)</mark> Ca ²⁺ и Cl ⁵⁺
$_{3)}\mathrm{S}^{0}$ и Cl^{-}
(3) N ³⁻ и Р ³⁻
Задание 2 Высший оксид элемента с электронной конфигурацией $^{1s^22s^22p^63s^23p^5}$
(1)9205
$(2)90_3$
$(3)9_2O_7$
$(4)90_4$
Задание 3 Электронная конфигурация $^{1s^22s^22p^63s^23p^6}$ соответствует частице
$1)^{S^{4+}}$ \mathbb{R}^{3-}
$(2)^{P^{3}}$
$\frac{1}{3}$ Al ³⁺
2) P ³⁻ 3) Al ³⁺ 4) O ²⁻
Задание 4 Электронную конфигурацию инертного газа имеет ион
1) Fe ³⁺
$\frac{1}{2}$ Cl ⁻

$3)^{\text{Cu}^{2+}}$
4) Fe ²⁺
Задание 5 Какие два атома имеют одинаковое число s-электронов в основном со-
стоянии?
1) № и К
2) Cl и Na
3) Cl и Fe
4) Р и Cl
Задание 6 Одинаковое число электронов содержат частицы
$1)^{\text{Al}^{3}} N^{3}$
$(2)^{\frac{1}{2}} Ca^{2+} U^{-5}$
$3)$ S 0 _M Cl $^{-}$
$\binom{3}{4} N^{3}_{\ \ \mu} P^{3}$
Задание 7 Какая электронная конфигурация соответствует распределению валент-
ных электронов в атоме хрома?
$1)^{3d^44s^2}$
$\binom{1}{2} 3s^2 3p^4$
2) ⁶⁵ ⁶ ⁶
$(3)^{3}d^{5}4s^{1}$
4) 4s ² 4p ⁶
Задание 8 Атому аргона в основном состоянии соответствует электронная конфи-
гурация частицы
1) S ²⁻
$2 \operatorname{Zn}^{2+}$
3)Si ⁴⁺
$\left(\begin{array}{c} 3 \\ 4 \end{array}\right) \mathrm{Se}^{0}$
<u>'</u>
II. Периодический закон и система элементов Д.И. Менделеева.

Задание 1 Сходную конфигурацию внешнего энергетического уровня имеют
атомы Р и
(1) Λ_{Γ}
(2) Al
3)Cl
(4) N
Задание 2 Легче всего присоединяет электроны атом
1) серы
2) хлора
3) селена
4) брома
Задание 3 В каком ряду химические элементы расположены в порядке уменьше-
ния их атомного радиуса?
$(1)^{\mathbb{C}} \longrightarrow \mathbb{B} \longrightarrow \mathbb{B}^{2}$
$(2)^{P} \longrightarrow S \longrightarrow CI$
$\begin{array}{c} (3) & \text{Si} \longrightarrow \text{A1} \longrightarrow \text{Mg} \\ (4) & \text{F} \longrightarrow \text{O} \longrightarrow \text{N} \end{array}$
$(4) \text{ F} \longrightarrow \text{O} \longrightarrow \text{N}$

Задание 4 Сходную конфигурацию внешнего энергетического уровня имеют

атомы магния и 1) кальция

- 2) хрома
- 3) кремния
- 4) алюминия

Задание 5В каком ряду химические элементы расположены в порядке возрастания электроотрицательности?

- 1) O, N, C
- 2) Be, Mg, Ca
- 3N, P, As
- 4) As, Se, Br

Задание 6 Неметаллические свойства наиболее выражены у

- 1) кремния
- 2) кислорода
- 3) бора
- 4) серы

Задание 7 Характер оксидов в ряду

$$\text{Li}_2\text{O} \longrightarrow \text{BeO} \longrightarrow \text{B}_2\text{O}_3$$

изменяется от

- 1) основного к кислотному
- 2) основного к амфотерному
- 3) амфотерного к кислотному
- 4) кислотного к основному

Задание 8В каком ряду химические элементы расположены в порядке возрастания их атомного радиуса?

- 1) Li, Be, B, C
- 2) P, S, Cl, Ar
- 3) Sb, As, P, N
- 4) F, CI, Br, I

III. Химическая связь.

Задание 1 Ковалентная полярная связь характерна для каждого из двух веществ:

- 1) углекислого газа и сероводорода
- 2) азота и аммиака
- 3) хлороводорода и хлорида натрия
- 4) оксида лития и гидроксида лития

Задание 2 Укажите вещество, в котором кислород образует ионные связи.

- 1) озон
- 2) оксид кальция
- 3) углекислый газ
- 4) вода

Задание 3 Вещества только с ковалентной полярной связью указаны в ряду:

- 1) CaF_2 , Na_2S , N_2
- (2) P₄, FeCl₃, NH₃
- 3)SiF₄, HF, H₂S
- 4) NaCl, Li₂O, SO₂

Задание 4 Водородная связь характерна для

- 1) алканов
- 2) аренов
- 3) спиртов
- 4) алкинов

Задание 5 Соединения с ковалентной неполярной связью расположены в ряду:

1) O_2 , $C1_2$, H_2

2) HC1, N₂, F₂ $(3) O_3, P_4, H_2O$ 4) NH₃, S₈, NaF Задание 6 Химическая связь между молекулами воды 1) водородная 2) ионная 3) ковалентная полярная 4) ковалентная неполярная Задание 7 Соединения с ионной связью расположены в ряду: F₂, KCl, NO₂, NH₃ 1) 2) NH₄Cl, LiBr, CaO, BaF₂ 3) CaF₂, CaSO₄, H₂O, NH₄F 4) NaNO₃, HF, NF₃,ZnO Задание 8 Веществом с ковалентной неполярной связью является: 1) аммиак 2) сероводород 3) оксид серы (∀) 4) белый фосфор IV. Классы неорганических соединений. Задание 1 Формулы кислоты, основания и основного оксида последовательно указаны в ряду: 1) Na₂SiO₃, KOH, K₂O 2) Ca(OH)₂, H₂S, CaO 3) HF, Mg(OH)₂, BaO 4) H₂SO₄, Ba(OH)₂, SiO₂ Задание 2 Амфотерным оксидом является 1) NO 2) ZnO 3) MgO 4) CO Задание 3 Амфотерные свойства не проявляет гидроксид 1) бериллия 2) лития 3) алюминия **4)** цинка\ Задание 4. К несолеобразующим оксидам относится 1) N_2O $2) NO_2$ $3) N_2 O_5$ 4) P_2O_3 Задание 5. К основным оксидам не относится $1) Ag_2O$ 2) MgO 3) Mn₂O₇4) CaO Задание 6. Химические соединения: CaCO₃, Ca(HCO₃)₂, CH₃COONa относятся к 1) кислотам 2) основаниям 3) солям

4) оксидам

Задание 7. Только кислотные оксиды содержатся в ряду: 1) NO, SiO₂, P₂O₅ 2) MgO, CO₂, NO₂ 3) CO₂, N₂O₅, P₂O₅

- 4) ZnO, Cl₂O₇, CaO

 Задание 8. К Кислотным оксидам относится:
- 1) BaO
- 2) Na₂O
- $3) P_2 O_5$
- 4) CaO

TECT № 2

I. Основы химической кинетики и катализ.

Задание 1 Для увеличения скорости химической реакции $H_2 + I_2 = 2HI$ необходимо

- 1) увеличить температуру
- 2) добавить иодоводород
- 3) уменьшить давление
- 4) увеличить объем реакционного сосуда

Задание 2 От увеличения площади поверхности соприкосновения реагентов не зависит скорость реакции между

- 1) фосфором и кислородом
- 2) кислородом и оксидом азота (II)
- 3) серой и водородом
- 4) магнием и азотной кислотой

Задание 3 Какое утверждение относительно катализаторов неверно?

- 1) Катализаторы участвуют в химической реакции
- 2) Катализаторы смещают химическое равновесие
- 3) Катализаторы изменяют скорость реакции
- 4) Катализаторы ускоряют как прямую, так и обратную реакцию

Задание 4 Для увеличения скорости реакции обжига пирита нужно

- 1) измельчить пирит
- 2) охлаждать печь для обжига с помощью водяного холодильника
- 3) понизить давление в печи
- 4) разбавить воздух, поступающий в печь, азотом

Задание 5 Коррозию труб отопительной системы можно замедлить, если

- 1) повысить температуру в системе
- 2) растворить в воде, циркулирующей в системе, кислород до насыщения
- 3) повысить давление в системе
- 4) растворить в воде ингибитор коррозии

Задание 6 Оцените справедливость утверждений:

- А. Добавление катализатора приводит к увеличению скорости реакции.
- **Б.** При нагревании реакционной смеси скорость экзотермической реакции уменьшается.
- 1) верно только А
- 2) верно только Б
- 3) верны оба утверждения
- 4) оба утверждения неверны

Задание 7 При $0\,^{\circ}$ С реакция, для которой температурный коэффициент равен 2, заканчивается за $120\,$ сек. Расчитайте, при какой температуре эта реакция закончится за $15\,$ сек.?

1) 10

2) 20
2) 20
3) 30
4) 40
Задание 8 3а какое время закончится реакция при 30 °C, если при 10 градусах она
заканчивется за 20 минут?
Температурный коэффициент равен 2.
1) 3
2) 5
$\frac{2}{3}$ 2
4) 9
TECT № 3
1. Определение массы и объёма.
Задание 1 Какая масса брома выделится при взаимодействии 0,3 моль бромида
калия с избытком хлора? (Запишите число с точностью до целых.)
Ответ:
Задание 2 При растворении сульфида железа (II) в избытке соляной кислоты выделилось 2,8 л (н.у.) газа. Масса сульфида железа (II) равна г. (Запишите число с точностью до целых.) Ответ:
Задание 3 Рассчитайте массу осадка, образующегося при взаимодействии избытка раствора нитрата бария с раствором, содержащим 7,84 г серной кислоты. (Запишите число с точностью до десятых.)
Ответ:
Задание 4 При полном взаимодействии 11,2 л сероводорода (при н.у.) с избытком сернистого газа получена сера массой Ответ:
Задание 5 Для получения 70 г железа из оксида железа(III) потребуется водород объёмом (при н.у.) Ответ:
Задание 6 Для получения 134,4 л водорода (при н.у.) из соляной кислоты потребуется алюминий массой
Ответ:
Задание 7 Масса железа, вступившего в реакцию с 16,8 л хлора (н.у.), равна Ответ:
Задание 8Объём кислорода, необходимого для полного сгорания 5 литров этана,
равен Ответ:

2. Способы выражения концентрации растворов.

Задание 1 Из 200 г 40%-ного насыщенного раствора соли при охлаждении выпала соль массой 40 г. В полученном растворе массовая доля соли равна Ответ:
Задание 2 Массовая доля соляной кислоты, выраженная в процентах, в растворе, полученном при растворении 11,2 л (н.у.) хлороводорода в 1 л воды, равна (с точ-
ностью до десятых) Ответ:
Задание 3 Масса воды, которую надо испарить из 800 г 15%-го раствора вещества, чтобы увеличить его массовую долю на 5% равна Ответ:
Задание 4Смешали 300 г 20%-го раствора, и 500 г 40%-го раствора NaCI. Чему равна процентная концентрация полученного раствора? Ответ:
Задание 5 Определить процентную концентрацию хлорида натрия в растворе, полученном при растворении соли массой 20 г в воде массой 300 г. Ответ:
Задание 6 К 300 мл гидроксида калия с концентрацией 20% (плотность 1,2 г/мл) прибавили КОН массой 40 граммов. Определить процентную концентрацию КОН в новом растворе. Ответ:
Задание 7 К 200 мл раствора серной кислоты (пл. 1,066) с концентрацией 10% прилили 1 л воды (пл. 1). Определить процентную концентрацию серной кислоты в новом растворе. Ответ:
Задание 8 При упаривании раствора хлорида натрия массой 500 граммов с концентрацией раствора 1% получили новый раствор массой 100 граммов. Какова процентная концентрация полученного раствора? Ответ:
3. Гидролиз солей.
Задание 1 Фенолфталеин можно использовать для обнаружения в водном растворе соли Ответ:
Задание 2 Среда раствора карбоната калия Ответ:
Задание ЗВодные растворы сульфата и фосфата натрия можно различить с помо-
щью
Ответ:

Задание 4	4 Гил [.]	ролизу	ВІ	волном	раство	ре не	полве	пгается:
Junine		P 001110 ,		однот	Pacific		подре	pr acrem.

- 1) Карбонат натрия
- 2) сульфид натрия
- 3) фосфат натрия
- 4) нитрат натрия

Задание 5 Кислая среда образуется в результате гидролиза:

- 1) нитрата кальция
- 2) хлорида кальция
- 3) хлорида цинка
- 4) сульфида натрия.

Задание 6 Среду раствора, близкую к нейтральной, имеет водный раствор

- 1) карбоната калия
- 2) хлорида железа (III)
- 3) нитрата аммония
- 4)нитрита аммония

Задание 7 Соль, которая подвергается необратимому гидролизу

- 1) хлорид алюминия
- 2) сульфид алюминия
- 3) сульфат алюминия
- 4) нитрат алюминия

Задание 8 В растворе существует в виде ионов

- 1) сульфид железа (III)
- 2) сульфит хрома (III)
- 3) сульфид хрома (III)
- 4) сульфат железа(III)

TECT № 4

1. Окислительно-восстановительные реакции.

Задание 1. Используя метод электронного баланса, составьте уравнение реакции $Na_2SO_3+\ldots+KOH\longrightarrow K_2MnO_4+\ldots+H_2O$

Определите окислитель.

Ответ:

Задание 2. Используя метод электронного баланса, составьте уравнение реакции: $Na_2CrO_4 + ... + H_2SO_{4(p,.)} \rightarrow I_2 + Cr_2(SO_4)_3 + ... + ...$

Определите восстановитель.

Ответ:

Задание 3. Используя метод электронного баланса, составьте уравнение реакции: $Na_2CrO_4 + ... + H_2SO_4(pas6) \rightarrow I_2 + Cr_2(SO_4)_3 + ... + ...$

Определите окислитель.

Ответ:

Задание 4. Используя метод электронного баланса, составьте уравнение реакции: $FeSO_4 + K_2Cr_2O_7 + ... \rightarrow ... + Cr_2(SO_4)_3 + ... + H_2O$

Определите восстановитель.

Ответ:

Задание 5. Используя метод электронного баланса, составьте уравнение реакции: $KClO_3 + CrCl_3 + ... \rightarrow K_2CrO_4 + ... + H_2O$

Определите окислитель.
Ответ:
Задание 6. Используя метод электронного баланса, составьте уравнение реакции:
NaNO ₃ + Cu + \rightarrow +Na ₂ SO ₄ + NO ₂ + H ₂ O
Определите восстановитель.
Ответ:
Задание 7. Используя метод электронного баланса, составьте уравнение реакции:
$NaBrO_3 + + NaOH \rightarrow NaF + NaBrO_4 +$
Определите окислитель.
Ответ:
Parama 9 Harray avg Matau anagrapawana fayayaa aaaran ta maanyayaa naayyyyy
Задание 8. Используя метод электронного баланса, составьте уравнение реакции: $MnO + KClO_3 + \rightarrow K_2MnO_4 + + H_2O$
Определите восстановитель.
Ответ:
TECT № 5
1. Взаимосвязь неорганических соединений.
Задание 1. Определите промежуточное вещество Х в схеме превращений:
$CuO \rightarrow X \rightarrow CuCl_2$
OTBET:
Other.
Задание 2. Определите промежуточное вещество Х в схеме превращений:
$Fe \rightarrow X \rightarrow Fe(OH)_2$
Ответ:
Задание 3. В схеме превращений
± ±
$S \rightarrow X_1 \rightarrow X_2 \rightarrow CuS$
веществами X_1 и X_2 могут быть соответственно
Ответ:
Задание 4. В схеме превращений
$ZnO \rightarrow X_1 \rightarrow X_2 \rightarrow Zn(OH)_2$
веществами X_1 и X_2 могут быть соответственно
Ответ:
Задание 5. Определите вещества X и Y в схеме превращений:
$CuO \xrightarrow{X} CuSO_4 \xrightarrow{Y} CuCl_2$
CuO CuSO4 CuCi2.
Ответ:
Задание 6. Определите вещества X и Y в схеме превращений:
$Fe \xrightarrow{X} FeCl_2 \xrightarrow{Y} Fe(OH)_2$
$re \longrightarrow reCl_2 \longrightarrow re(On)_2$
Ответ:

Задание 7. Дана схема превращений:					
$SO_2 \rightarrow Na_2SO_3 \rightarrow Na_2SO_4$					
Определите вещества X и Y.					
Ответ:					
Задание 8. Дана схема превращений:					
$CO_2 \rightarrow K_2CO_3 \rightarrow KNO_3$					
Определите вещества X и Y.					
Ответ:					

Комплект заданий для контрольной работы по дисциплине <u>Неорганическая и аналити</u>ческая химия

- 1. Напишите электронные формулы атомов элементов с порядковыми номерами 9 и 28. К какому электронному семейству относится каждый из этих элементов?
- 2. Напишите электронные формулы атомов фосфора и ванадия. К какому электронному семейству относится каждый из этих элементов?
- 3. Какое максимальное число электронов могут занимать s-, p-, d- и f-орбитали данного энергетического уровня? Почему?
- 4. Напишите электронные формулы атомов марганца и селена. К какому электронному семейству относится каждый из этих элементов?
- 5. Какие орбитали атома заполняются электронами раньше: 4s или 3d; 5s или 4p? Почему? Составьте электронную формулу атома элемента с порядковым номером 21.
- 6. Составьте электронные формулы атомов элементов с порядковыми номерами 17 и 29. У последнего происходит провал одного 4s-электрона на 3d-подуровень. К какому электронному семейству относится каждый из этих элементов?
- 7. Какие орбитали атома заполняются электронами раньше: 4d или 5s; 6s или 5p? Почему? Составьте электронную формулу атома элемента, порядковый номер которого 43.
- 8. Составьте электронные формулы атомов элементов с порядковыми номерами 21 и 23. Сколько свободных 3d-орбиталей в атомах этих элементов?
- 9. Квантовые числа для электронов внешнего энергетического уровня атомов некоторого элемента имеют следующие значения: $n=4, l=0, m_l=0, m_s=\pm 1/2$. Напишите электронную формулу атома этого элемента и определите, сколько свободных 3d-орбиталей он содержит.
- 10. Какие из электронных формул, отражающих строение невозбужденного атома некоторого элемента неверны:
- a) $1s^22s^22p^53s^1$;
- б) $1s^22s^22p^6$;
- B) $1s^22s^22p^63s^23p^63d^4$;
- Γ) $1s^22s^22p^63s^23p^64s^2$;
- д) $1s^22s^22p^63s^23d^2$.

Почему? Атомам каких элементов отвечают правильно составленные электронные формулы?

- 11. Исходя из положения германия, цезия и технеция в периодической системе составьте формулы следующих соединений: мета- и ортогерманиевой кислот, дигидрофосфата цезия и оксида технеция, отвечающего его высшей степени окисления. Изобразите графически формулы этих соединений.
- 12. Что такое энергия ионизации? В каких единицах она выражается? Как изменяется восстановительная активность s- и p-элементов в группах периодической системы с увеличением порядкового номера? Почему?

- 13. Что такое электроотрицательность? Как изменяется электроотрицательность рэлементов в периоде, в группе периодической системы с увеличением порядкового номера?
- 14. Исходя из положения германия, молибдена и рения в периодической системе составьте формулы следующих соединений: водородного соединения германия, рениевой кислоты и оксида молибдена, отвечающего его высшей степени окисления. Изобразите графически формулы этих соединений.
- 15. Что такое сродство к электрону? В каких единицах оно выражается? Как изменяется окислительная активность неметаллов в периоде и в группе периодической системы с увеличением порядкового номера? Ответ мотивируйте строением атома соответствующего элемента.
- 16. Составьте формулы оксидов и гидроксидов элементов третьего периода периодической системы, отвечающего его высшей степени окисления. Как изменяется химический характер этих соединений при переходе от натрия к хлору?
- 17. Какой из элементов четвертого периода ванадий или мышьяк обладает более выраженными металлическими свойствами? Какой из этих элементов образует газообразное соединение с водородом? Ответ мотивируйте, исходя из строения атомов данных элементов.
- 18. Какие элементы образуют газообразные, соединения с водородом? В каких группах периодической системы находятся эти элементы? Составьте формулы водородных и кислородных соединений хлора, теллура и сурьмы, отвечающих их низшей и высшей степеням окисления.
- 19. У какого элемента четвертого периода хрома или селена сильнее выражены металлические свойства? Какой из этих элементов образует газообразное соединение с водородом? Ответ мотивируйте исходя из строения атомов хрома или селена.
- 20. Какую низшую степень окисления проявляют хлор, сера, азот и углерод? Почему? Составьте формулы соединений алюминия с данными элементами в этой их степени окисления. Как называются соответствующие соединения?
- 21. У какого из р-элементов пятой группы периодической системы фосфора или сурьмы сильнее выражены металлические свойства? Какой из водородных соединений данных элементов более сильный восстановитель? Ответ мотивируйте строением атомов этих элементов.
- 22. Исходя из положения металла в периодической системе дайте мотивированный ответ на вопрос: какой из двух гидроксидов более сильное основание: $Ba(OH)_2$ или $Mg(OH)_2$; $Ca(OH)_2$ или $Fe(OH)_2$; $Cd(OH)_2$ или $Sr(OH)_2$?
- 23. Почему марганец проявляет металлические свойства, а хлор неметаллические? Ответ мотивируйте строением атомов этих элементов. Напишете формулы оксидов и гидроксидов хлора и марганца.
- 24. Какую низшую степень окисления проявляют водород, фтор, сера и азот? Почему? Составьте формулы соединений кальция с данными элементами в этой их степени окисления. Как называются соответствующие соединения?
- 25. Какую низшую и высшую степень окисления проявляют кремний, мышьяк, селен и хлор? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.
- 26. К какому семейству относятся элементы, в атомах которых последний электрон поступает на 4f- и на 5f-орбитали? Сколько элементов включает каждое из этих семейств? Как отражается на свойствах этих элементов электронное строение их атомов?
- 27. Атомные веса элементов в периодической системе, непрерывно увеличиваются, тогда как их свойства простых веществ изменяются периодически. Чем это можно объяснить?
 - 28. Какова современная формулировка периодического закона? Объясните, почему

в периодической системе элементов аргон, кобальт, теллур и торий помещены соответственно перед калием, никелем, йодом и протактинием, хотя и имеют больший атомный вес?

- 29. Какую низшую и высшую степень окисления проявляют углерод, фосфор, сера и йод? Почему? Составьте формулы соединений данных элементов, отвечающих этим степеням окисления.
- 30. Какую высшую степень окисления могут проявлять германий, ванадий, марганец и ксенон? Почему? Составьте формулы оксидов данных элементов, отвечающих этой степени окисления.
- 31. Какую химическую связь называют ковалентной? Чем можно объяснить направленность ковалентной связи? Как метод валентных связей (ВС) объясняет строение молекулы воды?
- 32. Какая ковалентная связь называется неполярной и какая полярной? Что служит количественной мерой полярности ковалентной связи? Составьте электронные схемы строения молекул N_2 , H_2O , HI. Какие из них являются диполями?
- 33. Какой способ образования ковалентной связи называется донорно-акцепторным? Какие химические связи имеются в ионах NH_4^+ и BF_4^- ? Укажите донор и акцептор.
- 34. Как метод валентных связей объясняет линейное строение молекулы $BeCl_2$ и тетраэдрическое CH_4 ?
- 35. Какая ковалентная связь называется σ -связью и какая π -связью? Разберите на примере строения молекулы азота.
- 36. Сколько неспаренных электронов имеет атом хлора в нормальном и возбужденном, состояниях? Распределите эти электроны по квантовым ячейкам. Чему равна валентность хлора, обусловленная неспаренными электронами? Как метод валентных связей объясняет строение молекулы хлороводорода?
- 37. Распределите электроны атома серы по квантовым ячейкам. Сколько неспаренных электронов имеют ее атомы в нормальном и возбужденном состояниях? Чему равна валентность серы, обусловленная неспаренными электронами? Как метод валентных связей объясняет строение молекулы

сероводорода?

- 38. Что называется дипольным моментом? Какая из молекул HCl, HBr, HI имеет наибольший дипольный момент? Почему?
- 39. Какие кристаллические структуры называются ионными, молекулярными и металлическими? Кристаллы каких веществ (алмаз, хлорид натрия, диоксид углерода, цинк) имеют указанные структуры?
- 40. Составьте электронные схемы строения молекул Cl_2 , H_2Se , CCl_4 . В каких молекулах ковалентная связь является полярной? Как метод валентных связей (BC) объясняет угловое строение молекулы H_2Se ?
- 41. Теплоты образования ΔH°_{298} оксида и диоксида азота соответственно равны +90,37 кДж и +33,85 кДж. Определите ΔS°_{298} и ΔG°_{298} для реакций получения NO и NO₂ из простых веществ. Можно ли получить эти оксиды при стандартных условиях? Какой из оксидов образуется при высокой температуре? Почему?
- 42. При какой температуре наступит равновесие системы $4HCl_{(r)} + O_{2(r)} = 2H_2O_{(r)} + 2Cl_{2(r)}$; $\Delta H = -114,42$ кДж? Что является более сильным окислителем: хлор или кислород и при каких температурах?
- 43. Восстановление Fe_3O_4 оксидом углерода идет по уравнению $Fe_3O_{4(\kappa)}+CO_{(r)}=3FeO_{(\kappa)}+CO_{2(r)}$. Вычислите $\Delta G^{\circ}{}_{298}$ и сделайте вывод о возможности самопроизвольного протекания этой реакции при стандартных условиях. Чему равно $\Delta S^{\circ}{}_{298}$ в этом процессе?
 - 44. Реакция горения ацетилена протекает по уравнению

$$C_2H_{2(r)} + {}^5/_2O_{2(r)} = 2CO_{2(r)} + H_2O_{(x)}$$

Вычислите ΔG°_{298} и ΔS°_{298} , объясните уменьшение энтропии в результате этой реакции.

- 45. Уменьшается или увеличивается энтропия при переходах: а) воды в пар; б) графита в алмаз? Почему? Вычислите ΔS°_{298} для каждого превращения. Сделайте вывод о количественном изменении энтропии при фазовых и аллотропических превращениях.
- 46. Чем можно объяснить, что при стандартных условиях невозможна экзотермическая реакция, протекающая по уравнению

$$H_{2(r)} + CO_{2(r)} = CO_{(r)} + H_2O_{(ж)}; \Delta H = -2,85 \text{ кДж}$$

Зная тепловой эффект реакции и абсолютные стандартные энтропии соответствующих веществ, определите ΔG°_{298} этой реакции.

47. Прямая или обратная реакция будет протекать при стандартных условиях в системе

$$2NO_{(r)} + O_{2(r)} = 2NO_{2(r)}$$

Ответ мотивируйте, вычислив ΔG°_{298} прямой реакции.

48. Исходя из значений стандартных теплот образований и абсолютных стандартных энтропий соответствующих веществ, вычислите ΔG°_{298} реакции, протекающей по уравнению

$$NH_{3(r)} + HCl_{(r)} = NH_4Cl_{(\kappa)}$$

Может ли эта реакция при стандартных условиях идти самопроизвольно?

49. При какой температуре наступит равновесие системы

$$CO_{(r)} + 2H_{2(r)} = CH_3OH_{(ж)}; \Delta H = -128,05 \text{ кДж}.$$

50. Эндотермическая реакция взаимодействия метана с диоксидом углерода протекает по уравнению

$$CH_{4(\Gamma)} + CO_{2(\Gamma)} = 2CO_{(\Gamma)} + 2H_{2(\Gamma)}; \Delta H = +247,37 \text{ кДж.}$$

При какой температуре начнется эта реакция?

- 51. Окисление серы и ее диоксида протекают по уравнениям: а) $S_{(\kappa)} + O_{2(r)} = SO_{2(r)};$ б) $2SO_{2(r)} + O_{2(r)} = 2SO_{3(r)}$. Как изменятся скорости этих реакций, если объемы каждой из систем уменьшить в четыре раза?
- 52. Напишите выражение для константы равновесия гомогенной системы $N_2 + 3H_2 = 2NH_3$. Как изменится скорость прямой реакции образования аммиака, если увеличить концентрацию водорода в 3 раза?
- 53. Реакция идет по уравнению $N_2+O_2=2NO$. Концентрации исходных веществ до начала реакции были: $[N_2]=0,049$ моль/л; $[O_2]=0,01$ моль/л. Вычислите концентрацию этих веществ в момент, когда [NO] стала равной 0,005 моль/л.
- 54. Реакция идет по уравнению $N_2 + 3H_2 = 2NH_3$. Концентрации участвующих в ней веществ были: $[N_2] = 0,80$ моль/л; $[H_2] = 1,5$ моль/л; $[NH_3] = 0,10$ моль/л. Вычислите концентрацию водорода и аммиака, когда $[N_2]$ стала равной 0,50 моль/л.
- 55. Реакция идет по уравнению $H_2 + J_2 = 2HJ$. Константа скорости этой реакции при 508°C равна 0,16. Исходные концентрации реагирующих веществ были: $[H_2] = 0,04$ моль/л; $[J_2] = 0,05$ моль/л. Вычислите начальную скорость реакции и скорость ее, когда $[H_2]$ стала равной 0,03 моль/л.
- 56. Вычислите, во сколько раз уменьшится скорость реакции, протекающей в газовой фазе, если понизить температуру со 120 до 80°C. Температурный коэффициент скорости реакции равен трем.
- 57. Как изменится скорость реакции, протекающей в газовой фазе, при повышении температуры на 60°С, если температурный коэффициент скорости данной реакции равен двум?
- 58. Как изменится скорость реакции, протекающей в газовой фазе, при понижении температуры на 30°С, если температурный коэффициент скорости данной реакции равен трем?
- 59. Напишите выражение для константы равновесия гомогенной системы $2SO_2 + O_2 = 2SO_3$. Как изменится скорость прямой реакции образования серного ангидрида, если

увеличить концентрацию SO₂ в 3 раза?

60. Напишите выражение для константы равновесия гомогенной системы $CH_4 + CO_2 = 2CO + 2H_2$. Как следует изменить температуру и давление, чтобы повысить выход водорода? Прямая реакция - образования: водорода эндотермическая.

Варианты контрольных заданий

Номер варианта определяется последней цифрой номера зачётной книжки

Вариант № 1: 1, 11, 21, 31, 41, 51

Вариант № 2: 2, 12, 22, 32, 42, 52

Вариант № 3: 3, 13, 23, 33, 43, 53

Вариант № 4: 4, 14, 24, 34, 44, 54

Вариант № 5: 5, 15, 25, 35, 45, 55

Вариант № 6: 6, 16, 26, 36, 46, 56

Вариант № 7: 7, 17, 27, 37, 47, 57

Вариант № 8: 8, 18, 28, 38, 48, 58

Вариант № 9: 9, 19, 29, 39, 49, 59

Вариант № 10: 10, 20, 30, 40, 50, 60

5. Методические материалы, определяющие процедуры оценивания компетенции

Текущий контроль представляет собой проверку усвоения учебного материала теоретического и практического характера, регулярно осуществляемую на протяжении семестра.

К достоинствам данного типа относится его систематичность, непосредственно коррелирующаяся с требованием постоянного и непрерывного мониторинга качества обучения, а также возможность бально-рейтинговой оценки успеваемости обучающихся.

Недостатком является фрагментарность и локальность проверки. Компетенцию целиком, а не отдельные ее элементы (знания, умения, навыки) при подобном контроле проверить невозможно.

К основным формам текущего контроля (текущей аттестации) можно отнести устный опрос, письменные задания, лабораторные работы, контрольные работы.

Промежуточная аттестация как правило осуществляется в конце семестра и может завершать изучение как отдельной дисциплины, так и ее раздела (разделов) /модуля (модулей). Промежуточная аттестация помогает оценить более крупные совокупности знаний и умений, в некоторых случаях — даже формирование определенных профессиональных компетенций.

Достоинства: помогает оценить более крупные совокупности знаний и умений, в некоторых случаях – даже формирование определенных профессиональных компетенций.

Основные формы: зачет.

Текущий контроль и промежуточная аттестация традиционно служат основным средством обеспечения в учебном процессе «обратной связи» между преподавателем и обучающимся, необходимой для стимулирования работы обучающихся и совершенствования методики преподавания учебных дисциплин.

Критерии оценивания зачета:

Оценка **зачтено** выставляется, если ответ логически и лексически грамотно изложенный, содержательный и аргументированный ответ, подкрепленный знанием литературы и источников по теме задания, умение отвечать на дополнительно заданные вопросы; незначительное нарушение логики изложения материала, периодическое использова-

ние разговорной лексики, допущение не более одной ошибки в содержании задания, а также не более одной неточности при аргументации своей позиции, неполные или неточные ответы на дополнительно заданные вопросы; незначительное нарушение логики изложения материала, периодическое использование разговорной лексики при допущении не более двух ошибок в содержании задания, а также не более двух неточностей при аргументации своей позиции, неполные или неточные ответы на дополнительно заданные вопросы.

Оценка **незачтено**выставляется, если в ответе допущено существенное нарушение логики изложения материала, систематическое использование разговорной лексики, допущение не более двух ошибок в содержании задания, а также не более двух неточностей при аргументации своей позиции, неправильные ответы на дополнительно заданные вопросы; существенное нарушение логики изложения материала, постоянное использование разговорной лексики, допущение не более трех ошибок в содержании задания, а также не более трех неточностей при аргументации своей позиции, неправильные ответы на дополнительно заданные вопросы; полное отсутствие логики изложения материала, постоянное использование разговорной лексики, допущение более трех ошибок в содержании задания, а также более трех неточностей при аргументации своей позиции, полное незнание литературы и источников по теме вопроса, отсутствие ответов на дополнительно заданные вопросы.

Критерии оценивания выполнения кейс-заданий:

Отметка «отлично»

- задание выполнено в полном объеме с соблюдением необходимой последовательности действий; в ответе правильно и аккуратно выполняет все записи, таблицы, рисунки, чертежи, графики, вычисления; правильно выполняет анализ ошибок.

Отметка «хорошо»

- задание выполнено правильно с учетом 1-2 мелких погрешностей или 2-3 недочетов, исправленных самостоятельно по требованию преподавателя.

Отметка «удовлетворительно»

- задание выполнено правильно не менее чем наполовину, допущены 1-2 погрешности или одна грубая ошибка.

Отметка «неудовлетворительно»

- допущены две (и более) грубые ошибки в ходе работы, которые обучающийся не может исправить даже по требованию преподавателя или задание не решено полностью.

Критерии оценивания ответа обучающегося при собеседовании:

Оценка «отлично»

- выставляется обучающемуся, если дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, проявляющаяся в свободном оперировании понятиями, умении выделить существенные и несущественные его признаки, причинно-следственные связи. Ответ формулируется в терминах науки, изложен литературным языком, логичен, доказателен, демонстрирует авторскую позицию обучающегося.

Оценка «хорошо»

- выставляется обучающемуся, если дан полный, развернутый ответ на поставленный вопрос, показана совокупность осознанных знаний об объекте, доказательно раскрыты основные положения темы; в ответе прослеживается четкая структура, логическая последовательность, отражающая сущность раскрываемых понятий, теорий, явлений. Ответ изложен литературным языком в терминах науки. Могут быть допущены недочеты в определении понятий, исправленные обучающимся самостоятельно в процессе ответа.

Оценка «удовлетворительно»

- выставляется обучающемуся, если дан полный, но недостаточно последовательный ответ на поставленный вопрос, но при этом показано

умение выделить существенные и несущественные признаки и причинно-следственные связи. Ответ логичен и изложен в терминах науки. Могут быть допущены 2-3 ошибки в определении основных понятий, которые обучающийся затрудняется исправить самостоятельно.

Оценка «неудовлетворительно»

- выставляется обучающемуся, если дан неполный ответ, представляющий собой разрозненные знания по теме вопроса с существенными ошибками в определениях. Присутствуют фрагментарность, нелогичность изложения. Обучающийся не осознает связь данного понятия, теории, явления с другими объектами дисциплины. Отсутствуют выводы, конкретизация и доказательность изложения. Речь неграмотная. Дополнительные и уточняющие вопросы преподавателя не приводят к коррекции ответа обучающегося не только на поставленный вопрос, но и на другие вопросы дисциплины.

Критерии оценки знаний обучающихся при проведении тестирования

Оценка «отлично»

- выставляется при условии правильного ответа обучающегося не менее чем 85~% тестовых заданий;

Оценка «хорошо»

- выставляется при условии правильного ответа обучающегося не менее чем 70 % тестовых заданий;

Оценка «удовлетворительно»

- выставляется при условии правильного ответа обучающегося не менее 51 %; .

Оценка «неудовлетворительно»

- выставляется при условии правильного ответа обучающегося менее чем на $50\,\%$ тестовых заданий.

Результаты текущего контроля используются при проведении промежуточной аттестации.

Критерии оценивания контрольных работ:

Оценка «зачтено»

- выставляется, если обучающийся правильно выполнил не менее половины работы или допустил не более двух грубых ошибок, или не более одной грубой и одной негрубой ошибки и одного недочета, или не более двух-трех негрубых ошибок, или одной негрубой ошибки и трех недочетов, или при отсутствии ошибок, но при наличии четырех-пяти недочетов, плохо знает текст произведения, допускает искажение фактов.

Оценка «незачтено»

- выставляется, если обучающийся допустил число ошибок и недочетов превосходящее норму или если правильно выполнил менее половины работы.