МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

СЕВЕРО-КАВКАЗСКАЯ ГОСУДАРСТВЕННАЯ АКАДЕМИЯ СРЕДНЕПРОФЕССИОНАЛЬНЫЙ КОЛЛЕДЖ

Математика Практикум для обучающихся 2 курса специальности 33.02.01 Фармация

Рассмотрено и утверждено на заседании ЦК «Информационные и естественно-научные дисциплины»

Протокол № 1 от « 01 » 09 2023 г. Председатель ЦК 11. А. Черных

Черкесск 2023 Автор:

Моисеенко Е.В. – преподаватель СПК ФГБОУ ВО «СевКавГА»

Содержание

ПР№1	Вычисление производной функции
ПР№2	Исследование функции на экстремум
ПР№3	Интегральные исчисления
ПР№4	Операции над множествами
ПР№5	Комбинаторика
ПР№6	Элементы теории вероятности
ПР№7	Вычисление числовых характеристик выборки
ПР№8	Численные методы математической подготовки фармацевтов
ПР№9	Численные методы математической подготовки фармацевтов
ПР№10-	11 Решение прикладных задач в области профессиональной деятельности

Практическая работа №1 «Вычисление производной функции» *Цели работы:*

- обобщить и систематизировать знания по теме «Производная»;
- закрепить умения использовать полученные знания для нахождения производной функции.

Справочный материал:

Производной функцией y = f(x) в точке x называется предел отношения приращения функции Δy к приращению аргумента Δx , когда приращение аргумента стремится к нулю: $y'(x) = \lim_{x \to 0} \frac{\Delta y}{\Delta x}$.

Основные правила и формулы дифференцирования элементарных функций:

$$(x^{n})' = n \cdot x^{n-1}$$

$$(\sin x)' = \cos x$$

$$(\operatorname{arccos} x)' = -\frac{1}{\sqrt{1 - x^{2}}}$$

$$(a^{x})' = a^{x} \cdot \ln a$$

$$(\cos x)' = -\sin x$$

$$(arctgx)' = \frac{1}{1 + x^{2}}$$

$$(e^{x})' = e^{x}$$

$$(tgx)' = \frac{1}{\cos^{2} x}$$

$$(arcctgx)' = -\frac{1}{1 + x^{2}}$$

$$(\log_{a} x)' = \frac{1}{x \cdot \ln a}$$

$$(ctgx)' = -\frac{1}{\sin^{2} x}$$

$$(arcctgx)' = -\frac{1}{1 + x^{2}}$$

$$(ctgx)' = -\frac{1}{\sin^{2} x}$$

$$(arcctgx)' = -\frac{1}{1 + x^{2}}$$

$$(arcctgx)'$$

Пусть функция y = y(u), u = u(x) - дифференцируемые функции. Тогда сложная функция y = y(u(x)) также дифференцируемая функция, причем: $y'_x = y_{u'} \cdot u'_x$ или $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$. Это правило распространяется для любого конечного числа дифференцируемых функций: производная сложной функции равна произведению производных функций, ее составляющих.

Ход работы:

Вариант 1

1. Найдите производную функции

1)
$$y = 12x^2 - \sqrt{x}$$

2) $y = 3\sin x + 4x^3$

$$3) \quad y = \frac{3}{x} - 4\cos x$$

4)
$$y = 3x^5 - 8x^{10}$$

$$5) \quad y = x^3 + 4x^2 - \frac{5}{x^2}$$

6)
$$y = x (x^3 + 4x^2 - 1)$$

$$7) \quad y = \frac{x^5 + 4x^4 - 1}{x^2}$$

8)
$$y = x \sin x$$

10)
$$y = \cos(2x + \frac{\pi}{3})$$

9)
$$y = (x^2 + 4x - 1)^6$$

2. Решите уравнение f'(x) = 0, если $f(x) = x - \cos x$

Вариант 2.

1. Найдите производную функции

1)
$$y = 2x^3 - 4\sqrt{x}$$

2)
$$y = 2\sin x + 3x^3$$

$$3) \quad y = \frac{5}{x} - 7\cos x$$

4)
$$y = 3x^{11} - 5x^4$$

5)
$$y = x^4 - 6x + \frac{3}{x^2}$$

6)
$$y = x(x^2 - 5x + 1)$$

7)
$$y = \frac{x^3 - 5x^2 + 1}{x^2}$$

8)
$$y = x \cos x$$

9)
$$y = (x^3 - 5x + 1)^5$$

10)
$$y = \sin(4x - \frac{\pi}{4})$$

2. Решите уравнение f'(x) = 0, если $f(x) = 3x^4 - 4x^3 - 12x^2$

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №2 «Исследование функции на экстремум»

Цели работы:

- закрепить и обобщить умения и навыки исследования функций и построения графиков с помощью производной.

Справочный материал:

Схема применения производной для нахождения интервалов монотонности и экстремумов

Этапы	Пример
	для функции $y = 2x^3 - 3x^2 - 36x + 5$
Найти область определения функции и интервалы, на которых функция непрерывна.	Обл. определения: <i>R</i> Функция непрерывна во всей обл. определения
Найти производную $f'(x)$.	$f'(x)=6x^2-6x-36$
Найти критические точки, т.е. точки, в которых производная функции равна нулю или не существует.	$f'(x)=0, 6x^2-6x-36=0,$ $x_1=-2, x_2=3$
В каждом из интервалов, на которые область определения разбивается критическими точками, определить знак производной и характер изменения функции (с помощью достаточных условий монотонности).	знак f' + - + характер изменения функции
Относительно каждой критической точки определить, является ли она точкой максимума, минимума или не является точкой экстремума.	$x=-2$ -точка максимума ($x_{max}=-2$) $x=3$ -точка минимума ($x_{min}=3$)
Записать результат исследования функции: промежутки монотонности и экстремумы.	$f(x)$ возрастает при $x \in (-\infty; -2)$ и при $x \in (3;\infty)$; $f(x)$ убывает при $x \in (-2; 3)$; $x_{max} = -2, y_{max} = f(-2) = 49$; $x_{min} = 3, y_{min} = f(3) = -76$

Наибольшее и наименьшее значения функции, непрерывной на отрезке

Функция, непрерывная на отрезке, достигает своего наибольшего и наименьшего значений на этом отрезке либо в критических точках, принадлежащих отрезку, либо на его концах.

Схема нахождения наибольшего и наименьшего значений функции, непрерывной на отрезке

Этапы	Пример
	для функции $y = 2x^3$ - $3x^2 - 36x + 5$
	на отрезке [0; 4]
Найти производную $f'(x)$.	$f'(x) = 6x^2 - 6x - 36$
Найти на данном отрезке	f'(x) = 0 при $x = -2$ и при $x = 3$.
критические точки, т.е. точки, в	Отрезку [0; 4] принадлежит только
которых $f'(x) = 0$ или не существует.	одна критическая точка: $x = 3$.
Вычислить значения функции в	f(0)=5
критических точках и на концах отрезка.	f(3) = -76 f(4) = -59
Из вычисленных значений выбрать наименьшее и наибольшее.	$\max_{[0;4]} f(x) = f(0) = 5$ $\min_{[0;4]} f(x) = f(3) = -76$

Ход работы:

Вариант 1.

- 1. Найти интервалы монотонности и экстремумы функции $f(x) = x^3 3x^2 9x 4$
- 2. Найти наименьшее и наибольшее значение функции на указанном промежутке $f(x) = 2x^3 9x^2 3$ на отрезке [-1; 4].
 - 3. Исследовать функцию $y = -x^3 + 4x^2 4x$ и построить ее график.

Вариант 2.

1. Найти интервалы монотонности и экстремумы функции $f(x) = x^3 + 7x^2 - 5x + 2$

- 2. Найти наименьшее и наибольшее значение функции на указанном промежутке $f(x) = 2x^3 + 3x^2 + 2$ на отрезке [-2; 1].
- 3. Исследовать функцию $y = x^3 + 6x^2 + 9x$ и построить ее график

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №3 «Интегральные исчисления»

Цели работы:

- обобщить и систематизировать знания, полученные при изучении темы «Первообразная. Определённый интеграл».
- расширить представления о практическом значении данной темы.

Справочный материал:

Неопределенным интегралом функции y = f(x) называется совокупность первообразных для данной функции: $\int f(x) dx = F(x) + C$, где (F(x) + C)' = f(x), $d(F(x) + C) = f(x) \cdot dx$.

Рассмотрим таблицу интегрирования элементарных функций. Она поможет Вам проинтегрировать любую функцию.

$1. \int x^n dx = \frac{x^{n+1}}{n+1} + C$	$2. \int \frac{dx}{x} = \ln x + C$	$3. \int e^x dx = e^x + C$
$4. \int a^x dx = \frac{a^x}{\ln a} + C$	$5. \int \sin x dx = -\cos x + C$	$6. \int \cos x dx = \sin x + C$
$7. \int \frac{dx}{\cos^2 x} = tgx + C$	$8. \int \frac{dx}{\sin^2 x} = -ctgx + C$	$9. \int \frac{dx}{\sqrt{1-x^2}} = \arcsin x + C$
	$10. \int \frac{dx}{1+x^2} = arctgx + C$	

Рассмотрим основные свойства неопределенных интегралов:

1.	Постоянный множитель можно выносить за знак интеграла $ \int m \cdot f(x) dx = m \cdot \int f(x) dx , \text{ где } m = const. $
2.	Неопределенный интеграл от алгебраической суммы функций равен алгебраической сумме интегралов от этих функций $\int (f(x) + g(x)) dx = \int f(x) dx + \int g(x) dx$

Определение: Если F(x) - первообразная функции f(x), то разность F(b)

- F(a) называется определённым интегралом от функции f(x) на отрезке [а

$$\int_{a}^{b} f(x) dx$$

;b] и обозначают ^а

а – нижний предел интегрирования

b - верхний предел интегрирования

f(x)- подынтегральная функция

Правило вычисления определённого интеграла:

$$\int\limits_{a}^{b}f(x)\,dx=F(x)\Big|_{a}^{\ \ b}=F(b)-F(a)$$
 Формула Ньютона — Лейбница

Ход работы:

Вариант 1.

1. Докажите, что F(x) — первообразная для функции f(x) на указанном промежутке, если:

a)
$$F(x) = \frac{x^2}{2}$$
, $f(x) = x$, $x \in (-\infty; +\infty)$;

6)
$$F(x)=x^{-2}-\frac{1}{3}$$
, $f(x)=-2x^{-8}$, $x \in (0; +\infty)$;

B)
$$F(x) = 3\sqrt[4]{x^3} + \sqrt{2}$$
, $f(x) = \frac{9}{4\sqrt[4]{x}}$, $x \in (0; +\infty)$;

- 2. Для функции $f(x)=x^2$ найдите первообразную, график которой проходит через точку М (-1;2)
 - 3. Вычислите интеграл:
- 3. Вычислите интеграл

a)
$$\int_{0.25}^{0.5} \frac{dx}{x^2}$$
 6) $\int_{0}^{\frac{\pi}{4}} 4\cos x dx$ B) $\int_{-1}^{2} 2x^3 dx$

Вариант 2.

1. Докажите, что F(x) — первообразная для f(x) на указанном промежутке, если:

a)
$$F(x) = \frac{x^7}{7}$$
, $f(x) = x^6$, $x \in (-\infty; +\infty)$;

6)
$$F(x)=2x^{-1}+\sqrt{5}$$
, $f(x)=-2x^{-2}$, $x \in (0; +\infty)$;

B)
$$F(x)=3\sqrt[4]{x}-\frac{1}{5}$$
, $f(x)=\frac{3}{4\sqrt[4]{x^3}}$, $x \in (0; +\infty)$;

- 2. Для функции $f(x)=x^3$ найдите первообразную, график которой проходит проходит через точку M (1;-1).
 - 3. Вычислите интеграл

a)
$$\int_{0.5}^{1} \frac{dx}{x^3}$$
 6) $\int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \sin 4x dx$ B) $\int_{-2}^{\frac{1}{2}} 3x^2 dx$

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа№4 «Операции над множествами»

Цели работы:

- научиться выполнять операции дополнения, пересечения, объединения, разности, симметрической разности над множествами.

Справочный материал:

Операции над множествами

1. Пересечением множеств A и B называется множество, состоящее их всех тех и только тех элементов, которые принадлежат множествам A и B одновременно (обозначается: $A \cap B$). Используя характеристическое свойство, данное определение можно записать следующим образом:

$$A \cap B = \{x \mid x \in A \ u \ x \in B\} = \{x \mid x \in A \land x \in B\}.$$

Графическая иллюстрация пересечения двух множеств приведена на рис 1.

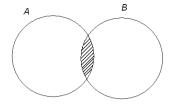


рис.1

2. Объединением двух множеств A и B называется такое множество, которое состоит из всех тех элементов, которые принадлежат хотя бы одному из множеств A или B (обозначается: $A \cup B$). Данное определение можно записать с помощью характеристического свойства:

$$A \cup B = \{x \mid x \in A$$
или $x \in B\}.$

Графическая иллюстрация объединения двух множеств показана на рис. 2.

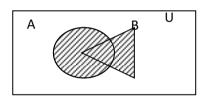


рис. 2

Отметим некоторые очевидные свойства операции объединения двух множеств:

$$A \cup A = A$$
, $A \cup \emptyset = A$, $A \cup U = U$.

Замечание 1.

Если A_1 , A_2 ,..., A_n — несколько множеств, то аналогично тому, как это делалось для двух множеств, определяется их пересечение, т.е. составляется множество, представляющее их общую часть:

$$P=A_1 \cap A_2 \cap ... \cap A_n=\{x \mid x \in \forall A_i, i=\overline{1..n}\},\$$

Замечание 2.

Если A_1 , A_2 ,..., A_n — несколько множеств, то аналогично тому, как это делалось для двух множеств, определяется их объединение — составляется множество, состоящее из элементов, которые принадлежат хотя бы одному их них:

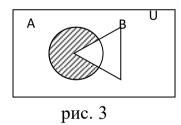
$$C = A_1 \cup A_2 \cup ... \cup A_n = \{x \mid x \in A_1 \text{ или } x \in A_2 \text{ или } ... \text{или } x \in A_n \}.$$

Замечание 3.

Если в выражении есть знаки \cup и \cap и нет скобок, то сначала выполняется операция пересечения, а потом — операция объединения (аналог сложению и умножению в арифметике).

3. Разностью двух множеств **A** и **B** называется множество, состоящее из всех тех и только тех элементов, которые принадлежат множеству **A** и не принадлежат множеству **B** (обозначается: **A** | **B**). С помощью характеристического свойства данное определение запишется следующим образом:

$$A \mid B = \{x \mid x \in A \ u \ x \notin B\}$$



4. Симметрической разностью двух множеств А и В называется множество, определенное характеристическом свойством:

$$A\Delta B = (A \setminus B) \cup (B \setminus A) = \{x \mid (x \in A \land x \notin B) \lor (x \notin A \land x \in B)\}$$

Графическая иллюстрация симметрической разности двух множеств показана на рис. 4.

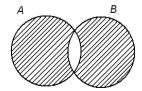


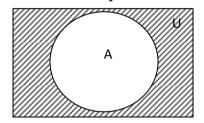
рис. 4

5. Пусть A — некоторое множество, являющееся частью универсального (основного) множества U. Дополнением множества A называется множество, состоящее из всех тех и только тех элементов их множества U, которые не принадлежат A. Его обозначают \overline{A} .

Это определение может быть записано в виде:

$$\overline{A} = \{x \mid x \notin A\}.$$

Графически дополнение изображено соответственно, на которых дополнения заштрихованы.



Ход работы:

1. Выполните задание в соответствии с номером варианта:

1. Осуществить операции над множествами: $A \cap \overline{B}$, $\overline{A} \cap \overline{B}$

Вариант	Множество А	Множество В	Множество U
1	$A = \{a, b, c, e\}$	$B = \{a, d, e, f\}$	$U = \{a, b, c, d, e, f, g\}$
2	$A = \{1, 3, 6, 7\}$	$B = \{1, 3, 5, 6\}$	$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$
3	$A = \{a, c, e, g\}$	$B = \{c, d, e, f\}$	$U = \{a,b,c,d,e,f,g\}$
4	$A = \{2, 4, 6, 7\}$	$B = \{1, 3, 5, 6\}$	$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$
5	$A = \{a, b, c, e\}$	$B = \{c, d, e, f\}$	$U = \{a,b,c,d,e,f,g\}$
6	$A = \{2, 4, 6, 7\}$	$B = \{3, 5, 7, 8\}$	$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$
7	$A = \{a, b, c, e\}$	$B = \{a, d, e, f\}$	$U = \{a,b,c,d,e,f,g\}$
8	$A = \{1, 4, 5, 7\}$	$B = \{3, 5, 7, 8\}$	$U = \{1, 2, 3, 4, 5, 6, 7, 8\}$

2. Заданы множества A, B, C, U. Найти множества: $A \cap \overline{B}$, $(A \cap C) \cup \overline{B}$, $A \cup (B \cap C)$, $(A \cup B) \cap (A \cup C)$, $\overline{A} \cap \overline{B}$, $\overline{A} \cap \overline{B}$, $(A \cup B) \cup C$, $A \cup (B \cup C)$, $A \setminus \overline{C}$, $(A \setminus C) \cup (B \setminus C)$.

Вариант	Множество А	Множество В	Множество С	Множество U
1	$A = \{c, d\}$	$B = \{b, c, d,\}$	$C = \{a, b, d\}$	$U = \{a, b, c, d\}$
2	$A = \{3,4\}$	$B = \{1, 2, 4\}$	$C = \{2,3\}$	$U = \{1, 2, 3, 4, 5\}$
3	$A = \{c, d\}$	$B = \{a, c, d,\}$	$C = \{a, b, d\}$	$U = \{a, b, c, d\}$
4	$A = \{1, 2\}$	$B = \{1, 2, 4\}$	$C = \{2,3\}$	$U = \{1, 2, 3, 4, 5\}$
5	$A = \{c, d\}$	$B = \{a, c, d,\}$	$C = \{a, d\}$	$U = \{a, b, c, d\}$
6	$A = \{1, 4\}$	$B = \{1, 2, 4\}$	$C = \{2,3\}$	$U = \{1, 2, 3, 4, 5\}$
7	$A = \{c, d\}$	$B = \{a, c, d,\}$	$C = \{a, b, c\}$	$U = \{a, b, c, d\}$
8	$A = \{a, d\}$	$B = \{a, b, d,\}$	$C = \{b, c\}$	$U = \{a, b, c, d\}$

3. Решение типовых примеров:

Осуществить операции над множествами E_1 ={2; 4; 6} и E_2 ={6; 8; 10}, если U={2; 4; 6; 8; 10}.

$$E_1 \cap E_2 = \{ \},$$

$$E_1 \cup E_2 = \{ \},$$

$$E_1 \setminus E_2 = \{ \},$$

$$E_2 \setminus E_1 = \{ \},$$

$$E_1\Delta E_2 = \{ \},$$

$$\overline{E_1} = U \setminus E_1 = \{ \},$$

$$\overline{E_2} = U \setminus E_2 = \{ \}.$$

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если самостоятельная работа выполнена более чем на 80-89%, ставится оценка «4». Если самостоятельная работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №5 «Комбинаторика»

Цели работы:

- отработать навыки применения определений элементов комбинаторики, ее основных свойств и формул при решении упражнений и задач по теории вероятности;
- создать условия для развития коммуникативно-творческих умений: не шаблонно подходить к решению различных задач;
- воспитание познавательной самостоятельности: развитие умения самостоятельно классифицировать, выполнять анализ, оценивать результаты.

Справочный материал:

1. Размешения.

Множество В называется подмножеством множества A, если каждый элемент В принадлежит А.Запись: В \subset A(множество В является подмножеством множества A). Считают также, что пустое множество является подмножеством любого множества ($O \subset A$) и любое множество является подмножеством самого себя ($A \subset A$). Каждое упорядоченное подмножество множества A называют **размещением**. Пусть множество A содержит п элементов. Часто возникает вопрос: сколько размещений по т элементов можно составить из $n(m \le n)$ элементов множества A? Чтобы ответить на этот вопрос, докажем теорему: число A_n^m размещений, состоящих из п элементов, взятых из т элементов, равно

$$A_n^m = \frac{n!}{(n-m)!} (m \le n)$$
. T.e. $A_n^m = n(n-1)(n-2)...(n-m+1)$.

<u>Пример1.</u> Число перемещений из 5 элементов по 3 равно

$$A_5^3 = 5 \cdot 4 \cdot 3 = 60.$$

<u>Пример 2.</u> Сколькими способами можно выбрать четырёх человек на различные должности из девяти кандидатов на эти должности?

Так как каждый выбор 4 человек из 9 имеющихся должен иметь определенный порядок распределения их на должности, то мы имеем задачу составления размещений из 9 по 4.

$$A_9^4 = \frac{9!}{5!} = 9 \cdot 8 \cdot 7 \cdot 6 = 3024$$
. Ответ: 3024 способами.

2. Перестановки.

Часто приходится рассматривать упорядоченные множества, т.е. множества в которых, каждый элемент занимает своё, вполне определенное место. Упорядочить множество-это значить поставить какой –либо элемент множества на первое место, какой либо другой элемент- на второе место и.т.д. Упорядоченные множества принято иногда записывать в круглых скобках.

Упорядочить множество можно различными способами. Например, множество состоящие из трёх элементов a,b и c, можно упорядочить шестью способами(a,b,c,);(a,c,b);(b,a,c);(b,c,a);(c,a,b);(c,b,a).

Каждое упорядоченное множество каких-либо элементов называется перестановкой. Сколько можно составить перестановок из п элементов?

<u>Пример 1.</u> Если множество состоит из одного элемента a_1 , то его можно, очевидно, упорядочить единственным способом, а именно (a_1) . Итак, из одного элемента можно составить одну перестановку.

Пример 2. Пусть имеются два элемента : a_1 и a_2 . Ясно, что из этих элементов можно составить только две перестановки: поставить a_2 перед a_1 или поставить a_2 после a_1 :(a_2 , a_1); (a_1 , a_2). Итак, число перестановок из двух элементов равно $1 \cdot 2$.

Пример 3. Пусть имеются три элемента: a_1, a_2 и a_3 .Запишем сначала перестановки из двух элементов a_1 и a_2 и в каждую из этих перестановок впишем элемент a_3 вначале на первое место, потом на второе место и , наконец, на третье -последние место. Получи шесть перестановок: $(,a_3,a_2,a_1); (a_2,a_3,a_1); (a_2,a_1,a_3); (a_3,a_3,a_2); (a_1,a_3,a_2); (a_1,a_2,a_3)$. Итак, число перестановок из трех элементов равно $1 \cdot 2 \cdot 3 = 6$

<u>Пример 4.</u>Пусть имеются четыре элемента: a_1, a_2, a_3, a_4 .Запищем все перестановки из трёх элементов a_1, a_2 и a_3 (их число равно $1 \cdot 2 \cdot 3 = 6$)

и в каждую из этих перестановок впишем элемент а₄ в начале на первое место, потом на второе, затем на третье и, наконец, на четвёртое-последние место). Получаем 24 перестановки:

$$(a_4,a_3,a_2,a_1);(a_2,a_4,a_3,a_1);(a_2,a_3,a_4,a_1);(a_3,a_2,a_1,a_4);(a_4,a_2,a_3,a_1);(a_2,a_4,a_3,a_1);(a_2,a_3,a_4,a_1);(a_2,a_3,a_4,a_2,a_3);(a_1,a_4,a_2,a_3);(a_1,a_2,a_4,a_3);(a_1,a_2,a_3,a_4).$$

Итак, число перестановок из четырёх элементов равно $1 \cdot 2 \cdot 3 \cdot 4 = 24$.

Теперь можно сформулировать теорему : число перестановок из n элементов равно произведению n первых натуральных чисел, т.е. P_n = $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5...n$ (где P_n -число перестановок из n элементов). Произведение n первых натуральных чисел обозначают n! (читается «эн факториал»), например:

$$1!=1;2!=1 \cdot 2;3!=1 \cdot 2 \cdot 3;4!=1 \cdot 2 \cdot 3 \cdot 4.$$

3. Сочетания.

Пусть имеется множество $A = \{a_1, a_2 a_3 ..., a_n\}$, состоящие из n элементов. Из этого множества можно составить подмножество, состоящие из m элементов ($m \le n$). Каждое подмножество состоящие из m элементов, содержащихся в множестве A из n элементов, называется **сочетанием** из n элементов по m . Число всех таких сочетаний обозначается через C_n^m . Сколько всех сочетаний по m элементов можно образовать из данных n элементов? Для ответа на этот вопрос докажем теорему: число C_n^m сочетаний из n элементов по m

равно
$$C_n^m = \frac{n!}{m!(m-n)!}$$
. $C_n^m = \frac{A_n^m}{m!} u \pi u C_n^m = \frac{n!}{m!(n-m)!}$.

<u>Пример 1.</u> Вычислить C_8^3 . Применяя формулу сочетаний, имеем $C_8^3 = \frac{8!}{3!5!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 81}{1 \cdot 2 \cdot 3 \cdot 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5} = 56$.

Пример 2. На плоскости расположено 5 точек. Сколько отрезков, концами которых являются эти точки, определяются этими точками?

Решение. Каждые две точки определяют один отрезок, у которого они являются концами .При этом не играет роли, в каком порядке взяты данные

точки. Поэтому число отрезков равно числу всевозможных пар точек, которые можно создать из 5 данных точек. Таким образом, решения задачи сводится к нахождению числа сочетаний из 5 элементов по 2:

$$C_5^2 = \frac{5!}{2!3!} = \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 2 \cdot 1 \cdot 2 \cdot 3} = 10.$$

Ход работы:

1 вариант	2 вариант	3 вариант	4 вариант	5 вариант		
	1. Вычислить:					
$A_7^3 + A_6^3$	$A_9^3 + A_5^3$	$A_6^3 + A_5^3$	$A_8^3 + A_7^5$	$A_5^4 + A_9^6$		
P_6	P_5	P_7	P_9	P_8		
C_{7}^{5}	C ₁₄	C_{21}^{17}	C_{28}^{20}	C_{35}^{29}		
	,	2. Решите задачи	I:			
Сколькими	Сколькими	Из отряда	Сколько	Сколько		
способами	способами трое	солдат в 50	различных	различных		
онжом	мальчиков -	человек,	аккордов можно	перестанов		
рассадить	Петя, Алмаз,	назначают в	взять на десяти	ок можно		
четыре	Куат - могут	караул 4	выбранных	составить		
человека в	встать в один	человека.	клавишах рояля,	из букв		
один ряд?	ряд?	Сколькими	если каждый	слова		
		способами это	аккорд может	«кортеж»?		
		можно сделать?	содержать до трех			
			звуков?			
На станции 7	В классе	Сколькими	Сколькими	На		
железнодорожн	изучают 10	способами	способами можно	плоскости		
ых путей.	предметов.	могут быть	составить	даны		
Сколькими	Сколькими	присуждены 1-	трехцветный флаг	точки А,		
способами	способами	я, 2-я, 3-я	(три	B, C, D.		
можно	онжом	премии трем	горизонтальные	Сколько		
расположить на	составить	лицам, если	полосы равной	векторов		
этих путях	расписание на	число	ширины), если	можно		
прибывшие 3	один день,	соревнующихс	имеется материал	образовать		
поезда?	чтобы в нем	я равно 10?	пяти различных	, соединяя		
	было 4 разных					

	предмета?		цветов?	эти точки?
Сколько	На плоскости	Сколькими	Сколько	Сколько
отрезков	даны точки А,	способами	различных	треугольн
онжом	B, C, D.	можно	перестановок	иков
получить,	Сколько	рассадить 12	можно составить	онжом
соединяя	отрезков	человек за	из букв слова	построить
попарно 9	можно	круглым	«треугольник»?	, соединяя
точек?	получить,	столом?		попарно
	соединяя			семь
	попарно эти			точек,
	точки?			любые три
				из которых
				не лежат
				на одной
				прямой?
3. Проверить вычислением		3.Решите уравнение:		
	венства:		<u></u>	
$C_7^4 + C_7^3 = C_8^4$	$C_{10}^5 + C_{10}^6$	$A_n^5 = 18A_{n-2}^4$	$A_n^4 = 12A_n^2$	$\frac{(n+2)!}{}$
	$= C_{11}^6$			n!
				= 72

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если самостоятельная работа выполнена более чем на 80-89%, ставится оценка «4». Если самостоятельная работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №6 «Элементы теории вероятности»

Цели работы:

- углубить знания по классическому определению вероятности;
- научиться вычислять вероятности событий, используя классическое определение вероятности;
- научиться вычислять вероятности с использованием формул комбинаторики.

Справочный материал:

1. Классическое определение вероятности события:

P(A)=m/n, где

m- число благоприятствующих событию исходов,

n- общее число равновозможных исходов.

2. Относительная частота события:

W(A)=m/n, где

т- число появлений событий,

n- общее число испытаний.

- 3. Перестановка: $P_n=n!$, где n!=1*2*3*...*n 4. Размещение: $A_n^m = \frac{P_n}{P_{n-m}} = \frac{n!}{(n-m)!}$
- 5. Сочетание: $C_n^m = \frac{A_n^m}{P_m} = \frac{n!}{m!(n-m)!}$

Ход работы:

Вариант 1.

- 1. Вычислить: а) 3!; б) 7!–5!; в) $\frac{7!+5!}{6!}$.
- 2. В среднем из 1000 садовых насосов, поступивших в продажу, 5 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не
- 3 Сколькими способами можно расставлять на одной полке 8 различных книг?
- 4. Сколько вариантов распределения трех путевок в санатории различного профиля можно составить для пяти претендентов?
- 5. В бригаде из 25 человек нужно выделить четырех для работы на определенном участке. Сколькими способами это можно сделать?
- 6. В партии из 18 деталей находятся 4 бракованных. Наугад выбирают 5 деталей. Найти вероятность того, что из этих 5 деталей две окажутся бракованными.

7. Прибор состоит из двух элементов, работающих независимо. Вероятность выхода из строя первого элемента равна 0,2; вероятность выхода из строя второго элемента равна 0,3. Найти вероятность того, что: а) оба элемента выйдут из строя; б) оба элемента будут работать.

Вариант 2.

- 1. Вычислите: a) 6!; б) 3!+5!; в) $\frac{7!\cdot 2!}{6!}$
- 2. Фабрика выпускает сумки. В среднем на 100 качественных сумок приходится восемь сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.
- 3. В соревнованиях участвовало четыре команды. Сколько вариантов распределения мест между ними возможно?
- 4. На факультете изучается 16 предметов. На понедельник нужно в расписание поставить 3 предмета. Сколькими способами можно это сделать?
- 5. Из 15 объектов нужно отобрать 10 объектов. Сколькими способами это можно сделать?
- 6. Сколькими способами можно составить дозор из трех солдат и одного офицера, если имеется 80 солдат и 3 офицера?
- 7. В урне шары разного цвета: 20 белого, 15 черного, 5 синего. Найти вероятность того, что из урны наугад извлеченный шар окажется не белого или синего цвета.

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №7 «Вычисление числовых характеристик выборки»

Цели работы:

- научить находить выборочное среднее, выборочную дисперсию, несмещенную выборочную дисперсию распределения.

Справочный материал:

1. Выборочное среднее:

$$\overline{\chi}_{\scriptscriptstyle B} = (x_1 + x_2 + \ldots + x_n)/n$$

2. Выборочная дисперсия:

$$D_0 = \overline{x}^2 - [\overline{x}]$$

3. Несмещенная выборочная дисперсия:

$$D = \frac{n}{n-1}D_0$$

Ход работы:

1.Для выборки 4,5,3,2,1,0,7,7,3 найти выборочное среднее, выборочную дисперсию, несмещенную выборочную дисперсию.

2.Для выборки 3, 8, -1, 3, 0, 5, 3, -1. 3, 5

Найти выборочное среднее $\overline{x}_{\rm B}$, ${\rm D}_0$, несмещенную выборочную дисперсию D.

3. Для выборки заданной статистическим рядом

X 10 40 80

n 5 3 2

Найти выборочную дисперсию D_0 .

4. Для выборки заданной выборочным распределителем

X -20 0 15 20

W 1/5 1/2 9/50 3/25

Найти выборочную дисперсию D_0 .

5. Для выборки объема n = 100 вычислена выборочная дисперсия $D_0 = 12,87$ Найти несмещенную выборочную дисперсию D.

6. Найти несмещенную выборочную дисперсию для выборки заданной статистическим рядом.

X 1 5 7 9 n 6 12 1 1

7. Четыре измерения длины стержня дали следующие результаты:

18, 19, 21, 22 м

Найти: 1) выборочную среднюю, 2) выборочную дисперсию, 3) несмещенную выборочную дисперсию.

8. Найти выборочное среднее, выборочную дисперсию, среднее квадратичное отклонение, несмещенную выборочную дисперсию, для выборки с данным статистическим распределением:

X	1		7	
n	6	12	1	1
X	-25	0	5	25
n	20	25	50	5

- 9. В итоге пяти измерений длины стержня были получены следующие результаты: 92, 94, 103,105,106мм Найти:
- а) выборочную среднюю длину стержня;
- б) выборочную дисперсию ошибок прибора;
- в) среднее квадратическое отклонение.
- 10. Даны результаты измерения роста (в см) группы из 100 учащихся.

Рост:

[154; 158], (158; 162), (162; 166), (166; 170], (170; 174], (174; 178], (178; 182],

соответствующее число учащихся: 10; 14; 26; 28; 12; 8; 2.

Найти выборочную среднюю, выборочную дисперсию и среднее квадратичное отклонение.

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №8 «Численные методы математической подготовки фармацевтов»

Цели работы:

- обеспечить повышение уровня математической компетентности студентовфармацевтов, осознание ценности математики для будущей профессиональной деятельности, развитие профессионально значимых качеств и приёмов умственной деятельности.

Справочный материал:

ПРОЦЕНТ – это сотая часть числа.

Чтобы найти процентное выражение данного числа, нужно умножить это число на 100 (или, что одно и то же, перенести запятую на два знака вправо)

Чтобы найти число по его процентному выражению, нужно разделить процентное выражение этого числа на 100 (или, что одно и то же, перенести запятую на два знака влево)

ПРИМЕР: 13,5% - 0,135; 2,3% - 0,023; 145% - 1,45.

Задачи на проценты можно решать следующими способами:

- с опорой на определение одного процента;
- с опорой на понятие дроби и формул нахождения дроби от числа и числа по дроби;
- с опорой на понятие пропорция и ее свойства, и применяя формулы нахождения членов пропорции.

Основные математические задачи на проценты.

Три основных вида задач на проценты.

1. Найти указанный процент данного числа.

<u>Чтобы найти несколько процентов от числа, достаточно это число</u> разделить на 100 и умножить на число процентов. ИЛИ перевести проценты в дробь и умножить данное число на полученную дробь.

ПРИМЕР: в отделении за сутки в среднем расходуется 0,5кг хлорной извести. Во время генеральной уборки помещений было израсходовано 153% среднесуточного количества хлорной извести. Сколько кг хлорной извести израсходовали во время генеральной уборки?

РЕШЕНИЕ:

1 способ:

- 1) 0.5:100=0.005
- 2) $0.005 \cdot 153\% = 0.765 \text{ K}$

2 способ:

- 1) 153% 1,53
- 2) $1,53 \cdot 0,5 = 0,765 \text{ K}$

2. Найти число по данной величине указанного его процента.

<u>Чтобы найти число по данным его процента, нужно данное число разделить на данное число процентов и умножить на 100.</u> ИЛИ <u>проценты выразить в виде дроби и данное число разделить на полученную дробь.</u>

ПРИМЕР: вес хлорной извести в растворе составляет 10%. Сколько потребуется воды, если необходимо развести 0,2 кг хлорной извести? РЕШЕНИЕ:

1 способ:

- 1) 0.2:10=0.02
- 2) $0.02 \cdot 100 = 2$ литра

2 способ:

- 1) 10% 0,1
- 2) 0.2:0.1=2 литра.

3. Нахождение выражения одного числа в процентах другого.

<u>Чтобы найти процентное отношение двух чисел, надо найти отношение</u> этих чисел и результат умножить на 100.

ПРИМЕР: при норме расхода хлорной извести 500г в сутки, в результате генеральной уборки израсходовали на 265г больше. На сколько процентов от ежедневной нормы израсходовали хлорной извести больше?

РЕШЕНИЕ:

- 1) 265:500=0.53
- 2) $0.53 \cdot 100 = 53\%$

Решение задач профессиональной направленности.

1. Вес четырехмесячного плода - 120г, а вес семимесячного плода — 1100г. Сколько процентов вес четырехмесячного плода составляет от семимесячного?

Решение: $120:1100\cdot 100=10,9\%$

2. Вычислить массу сердца новорожденного ребенка, если его вес 3 кг 400 г, а масса сердца составляет 0,66% от массы ребенка.

Решение: $3400:100\cdot0,66=22,44$ (г)

- 3. Рассчитать количество сухого вещества в:
- а) 250мл 0,1% раствора
- б) 500мл 40% раствора
- в) 1 мл 3,6% раствора

Решение:

a) $250:100\cdot 0,1=0,25$ (Γ)

- б) $500:100\cdot 40=200$ (г)
- B) $1:100 \cdot 3.6 = 0.036 (\Gamma)$
- 4. Сколько новокаина содержится в ампуле 10 мл 0,5% раствора?

Решение:

 $10:100\cdot 0.5=0.05\ (\Gamma)$

Ход работы:

Решить задачу:

- 1. После увеличения зарплаты фармацевта за непрерывный стаж работы на 20%, ее зарплата составила 30000 руб. Какова первоначальная зарплата?
- 2. За вредные условия труда медицинской сестре в ренгенкабинете полагается 15% надбавка. Основной оклад 25000руб. Какова зарплата с надбавкой?
- 3. Чему равна концентрация масляного раствора, в 300г которого содержится 30г вещества?
- 4. Сколько нужно взять сухого вещества, чтобы приготовить 2000мл 0,9% раствора натрия хлорида?
- 5. При сушке смородина теряет 80% своего веса. Сколько нужно взять свежей смородины, чтобы получить 5 кг сушеной смородины?
- 6. Из 40 кг свежей черники получается 8 кг сушеной. Сколько кг свежей черники нужно взять, что бы получилось 5 кг сушеной?
- 7. Растворимость хлорида натрия при 20°C составляет 36г соли на 100г воды. Сколько граммов соли при тех же условиях растворится в 340г?
- 8. Норма отпуска пахикарпина (средство, воздействующее на нервную систему) 1,2 лекарственного вещества. Сколько таблеток можно прописать больному, если в одной таблетке содержится 0,1 лекарственного вещества?

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если

практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №9 «Численные методы математической подготовки фармацевтов»

Цели работы:

- научить решать задачи на смеси и концентрацию вещества, а также задачи на проценты.

Справочный материал:

Большой интерес у студентов вызывают задачи на смеси и концентрацию. В процессе решения таких задач целесообразно действовать по следующей схеме:

а) Изучаем условие задачи:

Находим неизвестные величины, относительно которых составляется пропорция. Таким образом создается математическая модель ситуации, описанная в условии задачи.

b) Поиск плана решения:

Используя условие задачи, определяем все взаимосвязи между данными величинами.

с) Осуществляем решение задачи с помощью схемы:

Вещество а имеет массу Х и концентрацию а%

Вещество \mathbf{b} имеет массу \mathbf{Y} и концентрацию \mathbf{b} %

Вещество получаемое ${\bf c}$ имеет массу ${\bf x}+{\bf y}$ и концентрацию ${\bf c}\%$

Составим схему:

$$\frac{x}{v} = \frac{e\% - c\%}{c\% - a\%}$$

Далее, вставляя данные, вычисляем неизвестные значения.

Рассмотрим задачу:

Сколько миллилитров воды нужно взять, что бы получить 9%-ый раствор уксуса из 200 мл 70%-го раствора уксуса?

РЕШЕНИЕ:

Обозначим как:

вещество **A**
$$x = 200$$
мл 70%-го раствора

По схеме имеем:

$$Z = 9\%$$

$$X = 70 - 9$$

$$Y = 9 - 0$$

$$\frac{200}{v} = \frac{0-9}{9-70}$$

$$200.63 = 9y$$

$$y = \frac{12600}{9} = 1400$$

Ответ: 1400 мл воды.

Ход работы:

Решить задачу:

- 1. Сколько нужно взять 10% раствора осветленной хлорной извести и воды (в литрах) для приготовления 10л 5% раствора?
- 2. Сколько нужно взять 10% раствора осветленной хлорной извести и воды (в литрах) для приготовления 6л 5% раствора?
- 3. Потребность поликлиники в специалистах 25 человек, а работает всего 22 человека. Сколько это процентов?
- 4. Объем крови у взрослого человека составляет 5 литров. При глубоком порезе он потеряет 8% от общего объема. Найти какова потеря крови?
- 5. Найти массу костной системы человека весом 95кг, если известно, что костная система составляет 55% от массы тела.
- 6. Сколько граммов фурацилина находится в:
 - а) 200 мл 0,02% раствора;

- б) 500мл 0,02% раствора.
- 7. Емкость мочевого пузыря 3- месячного ребенка составляет 100мл. Он заполнен на 25%. Сколько мл мочи находится в мочевом пузыре ребенка?
- 8. Мышечная система человека составляет 40% от веса тела. Найти массу мышц человека весом 60кг.

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Практическая работа №10-11 «Решение прикладных задач в области профессиональной деятельности»

Цели работы:

- научить решать прикладные задачи в области профессиональной деятельности.

Справочный материал:

Рассмотрите решение следующих задач:

В аптеку поступили препараты от двух производителей в количестве 65 наименований, известно, что
 ¹/₁₃ из них от производителя Биофарма, а остальные – Брынцалов –А. Сколько наименований от каждого производителя поступило в аптеку?

<u>Решение:</u> $\frac{1}{13}$ ·65=5, 65-5=60. Значит, 5 наименований от производителя Биофарма, а 60 наименований от производителя Брынцалов –A.

2. Требуется разделить 300 мл раствора на части в отношении 4:5:3. Сколько мл будет в каждой части? <u>Решение:</u> Пусть одна часть составляет x мл, тогда искомые части 4x мл, 5x мл, 3x мл, т.к. всего 300 мл, то 4x + 5x + 3x = 300, x=25 мл. Искомые части равны 4*25=100 мл, 5*25=125 мл, 3*25=75 мл.

3. Лекарственный препарат стоит 500 рублей. В следующем месяце скидка на него составит 10%. Какую цену на лекарственный препарат со следующего месяца должен назначить фармацевт?

Решение: Найдем на сколько рублей уменьшится цена товара

$$500 \text{ py6} - 100\%$$

$$X руб - 10%$$

Отсюда, $X = \frac{500*10\%}{100\%} = 50$ руб. , т.е. скидка на товар 50 рублей

Значит, новая цена будет 500-50=450 рублей.

Ход работы:

Решить задачу:

- 1. Из 200 г порошка получается 500 таблеток. Сколько таблеток получится из 500 г порошка?
- 2. Фармацевт, работающий у окна, расположенного напротив входа в аптеку, в конце смены сдал выручку в размере 8 000 рублей, что составило 25% от дневной выручки всей аптеки. Рассчитайте выручку, полученную всеми работниками аптеки в этот день?
- 3. 10г хлорида натрия смешали с 15г сульфата натрия. Каково процентное содержание каждой из этих солей в полученной смеси?
- 4. Сколько грамм воды и глюкозы надо взять для приготовления 2 кг 0,9% раствора?
- 5. Сколько вещества нужно добавить к 100 мл воды, чтобы получить 20% раствор?
- 6. К 500 г 10 % раствора добавили 250 г воды. Какой стала процентная концентрация нового раствора?

- 7. Объем крови у взрослого человека составляет 5 литров. При глубоком порезе он потеряет 8% от общего объема. Найти какова потеря крови?
- 8. В больнице 190 койкомест. Из них заполнено больными 152 места. На сколько процентов заполнена больница.

Критерии оценки

Если практическая работа выполнена в полном объеме и правильно оформлена, то ставится оценка «5». Если практическая работа выполнена более чем на 80-89%, ставится оценка «4». Если практическая работа выполнена более чем на 70-79 %, ставится оценка «3». В противном случае работа не засчитывается.

Список рекомендуемой литературы

- 1. Алгебра и начала математического анализа, 10–11 класс, Алимов Ш.А., Москва, Просвещение, 2020
- 2. Алгебра и начала математического анализа, 10–11 класс, Колмагоров А.Н., Москва, Просвещение, 2019
- 3. Алгебра и начала математического анализа, 10–11 класс, Мордкович А.Г., Мнемозина, 2019
- 4. Сборник задач по математике, Богомолов Н.В. М.: Дрофа, 2005
- 5. Руденко В.Г., Янукян Э.Г. Пособие по математике, Пятигорск 2002г,
- 6. Бейли Н. Математика в биологии и медицине, М.: «ЁЁ медиа» 2012г
- 7.Омельченко В.П., Демидова А.А. Математика: компьютерные технологии в медицине (СПО), «Феникс» ,2008г
- 8. Гилярова М.Г. Математика для медицинских колледжей, «Феникс» 2012Γ

МОИСЕЕНКО Евгения Владимировна

МАТЕМАТИКА Практикум для обучающихся 2 курса специальности 33.02.01 Фармация

Печатается в редакции автора

Корректор Редактор

Сдано в набор Формат 60х84/16 Бумага офсетная. Печать офсетная. Усл. печ. л. 1,16. Заказ № Тираж

Оригинал-макет подготовлен в Библиотечно-издательском центре «СевКавГА» 369000, г. Черкесск, ул. Ставропольская, 36